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ABSTRACT: The fluid-thermal-structure interaction (FTSI) of a heated circular cylinder is 7 

numerically investigated at Pr = 0.71, Re = 60‒160, and Ri = 0‒2.0 in this article using the stabilized 8 

finite element method (FEM). The heat convection characteristics along the cylinder's surface in 9 

both forced and mixed convection subject to cross buoyancy are discussed and linked to the fluid 10 

instabilities. Additionally, the hydrodynamic characteristics are investigated in both time and 11 

frequency domains according to the strength of thermal cross buoyancy. Multiple harmonics of 12 

hydrodynamic coefficients and heat convection are identified from their frequency domains. 13 

Reynolds stresses are utilized to study the energy cascade of fluid kinetic energy and thermal energy 14 

via the fine-scale fluid fluctuation in the wake. Furthermore, the dynamic mode decomposition 15 

(DMD) technique is employed to extract the dominant spatial-temporal modes from the original 16 

field data. It is found that more linear DMD modes are required to accurately reconstruct the 17 

vorticity and temperature contours. It implies that strong nonlinear features exist in the wake and 18 

are influenced by the thermal buoyancy. 19 

 20 

I. INTRODUCTION 21 

Flow around a circular cylinder is usually accompanied with heat exchange in engineering 22 

applications. Based on the Richardson number (Ri = Gr/Re2, where Gr and Re are the Grashof and 23 

Reynolds numbers, respectively), the heat exchange could be classified into three main categories: 24 

forced convection, natural convection and mixed convection. The vortex shedding of a circular 25 

cylinder in mixed convection is physically more complicated in comparison with that in forced or 26 
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natural convection owing to the combined effects of buoyancy and viscous force. The purpose of 27 

this article is not only to characterize the hydro-thermal mechanism of the wake subject to strong 28 

cross buoyancy but also to evaluate the feasibility of dynamic mode decomposition analysis in flow-29 

temperature field reconstruction and prediction. 30 

The von Kármán vortex street1 behind a circular cylinder is frequently employed as a canonical 31 

case in literature to study the hydrodynamic instability in wake and has drawn a great attention 32 

among the fluid community. In the past, the studies of this wake instability primarily focus on the 33 

study of the isothermal flow in a wide range of Reynolds number (e.g. Roshko,2 Abernathy and 34 

Kronauer,3 Berger and Wille,4 Bearman5 and Williamson6). Before the onset of flow transition (e.g. 35 

Re approximately equals to 180 for a circular cylinder7-9), the flow is two dimensional, periodic and 36 

behaves as a dynamic system of limited circle. A sequence of alternatively shedding vortices from 37 

the upper and lower shear layers of the cylinder is observed. Because of the negligible influence of 38 

buoyancy effect on the fluid inertia, the hydrodynamics in forced convection is practically identical 39 

to those in an isothermal incompressible flow, except for the heat convection across the thermal 40 

boundary layers of a heated cylinder. 41 

In thermal engineering, the hot and cool fluid media are usually separated by metal tubes. The 42 

primary objective in engineering design is to improve the heat exchange efficiency across the metal 43 

tubes. Schmidt and Wenner10 were the first to report the local heat transfer along a circular cylinder. 44 

It is known that the maximum heat transfer can be found around the forward and rear stagnation 45 

points11-14 and the distribution of heat convection and pressure in wake are symmetric with respect 46 

to the incoming flow in the forced convection. Whereas for the mixed convection, the thermal 47 

buoyancy effect is critical and can significantly perturb the vortex dynamics in wake. Therefore, the 48 

vortex formation and wake structure are completely dependent on Re, Ri and Pr numbers together 49 

and are influenced by the gravitational force. A strong cross-buoyancy effect may cause a significant 50 

asymmetry of the wake in the gravitational direction, because the direction of thermal buoyancy is 51 

opposite to the direction of gravity (same direction for a cooled cylinder). Hence, the most of the 52 

research done in the past can be divided into three areas, following the terminology used by Badr:15-53 

16 (1) parallel flow, (2) contra-flow, and (3) horizontal cross-flow. 54 

For the parallel flow, Joshi and Sukhatme17 compared the difference of the heat transfer 55 
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characteristics between two types of thermal boundary conditions over a cylinder's surface: a 56 

constant temperature and a variable heat flux. They analyzed the heat transfer within the cylinder's 57 

boundary layer and the wall shear stress. It was found that the local Nusselt number (Nu(θ)) 58 

distribution, the wall shear stress and the separation point all increase proportionally with Ri number. 59 

Therefore the thermal buoyancy force must be considered when Ri > 2.17 Chatterjee18 also reported 60 

two phenomena in parallel flow: the suppression of flow separation occurring at relatively low 61 

Reynolds numbers (10–40) and the suppression of vortex shedding at a moderate Reynolds numbers 62 

(50–150). Further numerical simulations were carried out for Re = 10–40 and three different Prandtl 63 

numbers Pr = 0.71, 7 and 50 to compute the critical Ri number for the complete suppression of flow 64 

separation around the bluff bodies of circular and square shapes.19 By comparing the results in 65 

literature,20-21 it is realized that as the Re number increases, a higher Ri number (the thermal 66 

buoyancy effect in parallel flow) is required to suppress the vortex shedding behind a cylinder. 67 

For the contra-flow, Hu and Koochesfahani23 studied the vortex shedding and the wake 68 

structure behind a cylinder in both forced and mixed convection by changing the direction of gravity 69 

with respect to the incoming flow. When the Ri number is relatively small (Ri ≤ 0.31), the vortex 70 

shedding process in the wake behind a heated cylinder is similar to that of an unheated cylinder. As 71 

the Ri number increases to 0.50, the wake vortex shedding process is "delayed" and the vortex 72 

structures are shed much further downstream. As the value of Ri number is close to the unity (Ri > 73 

0.72), the concurrent shedding of smaller vortex structures is observed in the near wake of the heated 74 

cylinder. The smaller vortex structures are found to behave more like the "Kelvin–Helmholtz" 75 

vortices instead of the Kármán vortices. Therefore, the adjacent small vortices are found coalescing 76 

into the larger vortical structures further downstream. It is also found that the shedding frequency 77 

of the vortical structures in wake decreases with the increase of Ri. In practice, this result is the same 78 

as those reported in the previous works,24-26 changing the temperature of cylinder instead of the 79 

direction of gravity. By changing the heated (Ri > 0) cylinder into a cooled (Ri < 0) one, the effect 80 

of countercurrent thermal buoyancy can also be achieved in parallel flow. Chang and Sa24 reported 81 

that vortex stops shedding when Gr > 1500 (Ri > 0.15) at Re = 100. This is identified as a 82 

"breakdown of the Kármán vortex street" in wake. Parallel flow thermal buoyancy can inhibit the 83 

vortex shedding, whereas the contra-flow thermal buoyancy can induce the vortex-shedding 84 
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mechanism. The same conclusion is also drawn by Hatanaka and Kawahara.27 85 

For the horizontal cross-flow, one obvious phenomenon reported in experiments28-30 and 86 

numerical simulations15, 31-32 is that the coherent structure in wake is deflected aside due to the 87 

thermal cross buoyancy. In the early seventies last century, this effect was investigated to determine 88 

the global effects of the induced heat on the heat exchange coefficient.28 It was reported that the heat 89 

transfer coefficient was influenced considerably by the buoyancy-driven flow when Ri > 0.2. 90 

Furthermore the variation of vorticity, pressure and local Nusselt number around the cylinder surface 91 

in horizontal cross-flow can be acquired from Badr's result.15 By studying the temperature 92 

distribution within the wake, the researchers also concluded that this temperature distribution can 93 

be quite well approximated by the theoretical distribution for a diffusing line vortex.29 Kieft et al.30, 94 

33-34 carried out many experiments and simulations to explain the reason of deflected vortex wake 95 

structure and the phenomenon of flow transition in wake.35,36 In literature, it was found that the 96 

deflection of wake is caused by the baroclinic vorticity. The difference of vortex strength will lead 97 

to the drift rotation of the lower side vortex around the upper side vortex.37 Biswas and Sarkar38 and 98 

Sarkar et al.13 also reported in their works that the thermal buoyancy makes the steady flow 99 

separation unsteady. By comparing with literature and experiments, they noticed that boundary layer 100 

overpassed the leading edge separation phenomenon at low Re, and the vortex formed on the upper 101 

wall boundary due to the high block ratio, 0.05. In the cross buoyancy configuration, the onset of 102 

vortex shedding induced by the thermal buoyancy is shown at relatively low Reynolds numbers 103 

(10–40).18 Recently, Garg et al.39 reported that when Ri number is between 1 and 2, the thermal 104 

buoyancy can inhibit the vortex-induced vibration (VIV) at a low Re number (Re=50) until a critical 105 

high Re number (Re=150). However, while the Ri number is between 3 and 4, the galloping of 106 

cylinder is observed for different Re numbers. Recently Liu and Zhu32 also noticed a secondary VIV 107 

lock-in phenomenon in mixed convection and reported the energy transfer characteristics of a 108 

vibrating cylinder subject to the cross buoyancy.  109 

Nowadays, as the advancement of computing technique, the availability of large-scale high-110 

fidelity data is significantly boosted and widely accessible. The reduced order modeling techniques 111 

have been developed as a reliable and robust analytical tool to study the complex dynamics 112 

embedded in the high-fidelity data in the community of fluid mechanics.40 Dynamic mode 113 
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decomposition (DMD) is a robust and widely-accepted reduced order technique to extract and 114 

analyze the spatial-temporal modes of a dynamic system based on the time sequence of high-fidelity 115 

data. In the study of flow over a cylinder, Wang and Yu41 used the DMD method to analyze the 116 

vortex shedding of a vibrating square column, and studied the effects of St and Re on the vibration 117 

modes. Tu et al.42-43 applied the DMD method to experimental and numerical results of flow behind 118 

a plate with an elliptic front, and discussed the interaction between shear layers in wake. 119 

In summary, the combined effect of Reynolds and Richardson numbers on the hydrodynamics 120 

and thermodynamics characteristics of a circular cylinder in mixed convective flow is far from well 121 

understood. Furthermore, to the best of the authors' knowledge, the modal analysis of the wake 122 

behind a heated cylinder in mixed convection flow subject to cross-buoyancy effect has not been 123 

studies in the past. Therefore, the main objectives of this article are to reveal the intrinsic relationship 124 

between the thermodynamics and hydrodynamics characteristics for a heated cylinder subject to 125 

cross buoyancy and to evaluate the nonlinear features in the wake using the DMD technique. The 126 

results in the reconstruction and prediction of flow-temperature field will provide a reference for the 127 

subsequent data mining analysis or AI of thermal-fluid-structure interaction. The structure of this 128 

article is organized as follow. The governing equations, problem setup, numerical formulations and 129 

code validation are introduced in Section II. Subsequently the results and discussion are presented 130 

in Section III. Finally the conclusions are drawn in Section IV. 131 

II. PHYSICAL MODEL AND GOVERNING EQUATIONS 132 

A. Governing equations and problem description 133 

The unsteady Navier‒Stokes equations are coupled with the conservation of energy equation 134 

via Boussinesq approximation in this work to simulate the heat transfer and flow around the circular 135 

cylinder. The governing equations and associated boundary and initial conditions are expressed as: 136 

0  u                 Ω ( )f t x              (1a) 137 

 ( )t       u u u σ + g           Ω ( )f t x              (1b) 138 

2( )tT T T    u           Ω ( )f t x              (1c) 139 

;    u u   %% T T              Γ ( )f
D t x              (1d) 140 

;    ( )σ n h n    % %T q           Γ ( )f
N t x              (1e) 141 
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0 0;     u u  %% T T             Ω (0)f x              (1f) 142 

where u is the flow velocity vector, x is the position vector, ρ is the fluid density, p is the pressure, 143 

t is the flow time, [0, ] [0, 9.81]g     g   is the gravitational acceleration vector, σ is the 144 

Cauchy stress tensor, T is the temperature, α is the thermal diffusivity, u% represents the prescribed 145 

flow velocity imposed along the boundaries, %T  represents the prescribed temperature imposed 146 

along the boundaries, n is the unit outward normal vector of the element's edge, h% and %q are the 147 

prescribed convection transfer coefficient and heat flux along the boundaries, respectively, 0u%  148 

represents the initial flow velocity, 
0

%T  represents the initial temperature, and ΓD and ΓN denote the 149 

Dirichlet and Neumann domain boundaries, respectively. The term ∂t(·) represents the partial 150 

derivative with respect to time. The Cauchy stress tensor (σ) is a function of u and p and defined as: 151 

2p   σ I ε                                     (2a) 152 

 1
( )

2
   ε u u                                   (2b) 153 

where I is the Kronecker matrix, μ is the dynamic viscosity, ε is the strain rate tensor, and the 154 

superscript (') is a transpose operator.  155 

The non-dimensional force component is CD = 2FD/ρU∞
2D and CL = 2FL/ρU∞

2D, where F (FD, 156 

FL) is the fluid force imparted to the elastically mounted cylinder in the streamwise and transverse 157 

directions. The temperature is normalized by the maximum temperature differences expressed as T* 158 

= (T-Tin)/(Tw-Tin), where the T* is the normalized temperature, Tw and Tin represent the cylinder 159 

surface (maximum) and inlet (minimum) temperatures in the computational domain, respectively. 160 

The local Nusselt number Nu(θ) of a specific location on the cylinder surface and the Nu of the entire 161 

cylinder surface are defined as: 162 

*
( ) ( ) ( )Nu T    n                              (3a) 163 

( )
0

1
=Nu Nu d








                             (3b) 164 

Figure 1 illustrates the employed computational domain and associated boundaries. The 165 

circular cylinder is initially placed at the origin (x =0, y = 0), and the computational domain extends 166 

35D downstream and 10D upstream from the cylinder center. The cylinder are placed centrally in 167 
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the transverse direction, 25D from both the upper and lower boundaries. Consequently, the blocking 168 

ratio is 2%, meeting the requirement of blocking ratio less than 6%.44-45 169 

 170 

Figure 1. Schematic of the computational domain and associated boundary conditions. 171 

The configuration of research in this article consists of a horizontal heated cylinder with 172 

constant wall temperature T*= 1 and no-slip velocity boundary conditions, which is exposed to a 173 

uniform horizontal cross-flow with velocity u*= 1, v* = 0 and temperature T*= 0. The Neumann-type 174 

boundary conditions (h* = 0 and q* = 0) are applied along the outlet. The two lateral boundaries are 175 

defined as the symmetry boundary condition with v* = 0, h* = 0 and q* = 0. The Prandtl number are 176 

fixed at Pr = 0.71, and the Reynolds number of the heated cylinder is examined for Re = 60‒160 177 

with the Richardson number ranging from 0 to 2. 178 

B. Finite-element mesh structure 179 

In this investigation, the computational domain, 45D × 50D, is meshed by Gmsh in Fig. 2, 180 

where D is the diameter of the cylinder. A non-uniform grid distribution was employed with a more 181 

refined grid generated around three circular cylinders wall, and the smallest normalized grid height 182 

near the cylinder surface is set to 0.02 with y+ = 0.35 less than 1. The grid was further refined along 183 

a rectangular region encompassing the cylinder to accurately capture the wake and vortex street 184 

behind the cylinder. A close-up view of the mesh around the cylinder is shown in Fig. 2. The mesh 185 

is made up of a structured part near the cylinder's surface, which is adequately refined to capture the 186 

boundary layer. The unstructured part of the mesh is created via Delaunay's triangulation technique. 187 
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 188 

Figure 2. Finite-element mesh structure of the entire computational domain and grid distribution 189 

around the circular cylinder with zoom-in view of the boundary-layer elements. 190 

A mesh independence check was carried out to determine a reasonable mesh resolution. The 191 

influence of mesh resolution on the key results is summarized in Table I. The relative deviations in 192 

parentheses represent the difference between the present result and that obtained with M3, where C193 

 mean 
D , C RMS 

L , St and Numean are the time-mean drag coefficient, the root-mean-squared lift coefficient, 194 

Strouhal number and the mean Nusselt number, respectively. It is evident that the errors of 195 

hydrodynamic and thermal coefficients are within 1 % for M2. Thus, M2 is adopted in the 196 

subsequent calculation. After that, the results of time step convergence analysis together with the 197 

maximum Courant–Friedrichs–Lewy (CFL) number in the entire computational domain are listed 198 

in Table II. It shows that the normalized time step of dt = 0.01 (dt = ΔtU∞/D, Δt is the time step) is 199 

reasonable, where the errors are within 1% compared with the referential values at dt = 0.005. Hence, 200 

the normalized time step dt = 0.01 is employed for the simulations. 201 

Table I. Mesh independence check for flow past a circular cylinder in mixed convective flow at Re 202 

= 100, Pr = 0.71 and Ri = 1.0 with normalized time step of dt = 0.01. 203 

Mesh Elements C mean 
D  C RMS 

L  St Numean 

M1 36738 1.302 (0.68%) 0.257 (1.53%) 0.175 (0.00%) 5.119 (1.93%) 
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M2 58812 1.310 (0.07%) 0.261 (0.00%) 0.175 (0.00%) 5.212 (0.15%) 

M3 80246 1.311 0.261 0.175 5.220 

 204 

Table II. Time step convergence analysis for flow past a circular cylinder in mixed convective flow 205 

at Re = 100, Pr = 0.71 and Ri = 1.0 with M2 mesh. 206 

Time step C mean 
D  C RMS 

L  St Numean Max CFL 

dt = 0.020 1.289 (1.60%) 0.257 (1.91%) 0.175 (0.00%) 5.126 (1.80%) 1.21 

dt = 0.010 1.310 (0.00%) 0.261 (0.38%) 0.175 (0.00%) 5.212 (0.15%) 0.61 

dt = 0.005 1.310 0.262 0.175 5.220 0.30 

 207 

C. Code Validation 208 

The derived numerical formulation is validated for the flow around a heated isolated circular 209 

cylinder at Pr = 1 and 10, as illustrated in Fig. 3(a). Detailed code validation is done for an isolated 210 

cylinder in the literature.32 It can be seen that the obtained mean Nusselt numbers from the derived 211 

formulation for heat convection flow match well with the literature.13,46,47 Furthermore, it is also 212 

validated with the experimental and simulation results7,48-50, as shown in Fig. 3(b), the Strouhal 213 

number (St) consisting with literature well for the flow around a heated isolated circular cylinder in 214 

forced convection with the Re at ranging of 60‒160 in this study. 215 

 216 
(a)                                       (b) 217 

Figure 3. Validation of the implemented numerical algorithm for flow past a circular cylinder in 218 

forced convection flow at: (a) Pr = 1 and Pr = 10; (b) Re = 60‒160. 219 

III. RESULTS AND DISCUSSION 220 

A. Characteristics of heat convection 221 

To explore the details of heat convection mechanism, the local Nusselt number Nu 
(θ) along the 222 
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cylinder's surface is recorded in Fig. 4 and Fig. 5. Figure 4 shows that the time-averaged distribution 223 

of the Nu 
(θ) number is symmetric about the streamwise centerline behind the cylinder in forced 224 

convection (Ri = 0), which agrees well with the observations in literature.12 The maximum value of 225 

the Nu mean 
(θ)  is found around the front stagnation point (θ = 180°). However the minimum value of 226 

the Nu mean 
(θ)  is not at the rear stagnation point (θ = 0°), but at θ = 50° approximately.38 Figure 4(a) 227 

also shows that the heat convection can be significantly enhanced by increasing the value of Pr 228 

number, especially for the cases of low Pr numbers within the range of 0.7‒10.13 As shown in Fig. 229 

4(b), the maximum Nu mean 
(θ)  on the front stagnation point at Pr = 0.71 is 3.92 % higher than that at 230 

Pr = 0.7 reported by Sarkar et al.13 Furthermore, Fig. 4(b) also shows that the distribution of the Nu231 

 mean 
(θ)  along the cylinder's surface increases proportionally with the Re number, especially for the 232 

locations around the front and back stagnation points. 233 

  234 
(a)                                      (b) 235 

Figure 4. The distribution of the time-averaged Nusselt number Nu mean 
(θ)  around the cylinder in forced 236 

convection (Ri = 0): (a) comparison with reported results; (b) comparison at different Re. 237 

Figure 5 shows the time histories of the Nu 
(θ) distribution along the cylinder’s surface measured 238 

counterclockwise from the back of the cylinder (θ = 0°). It can be seen that the fluctuation of heat 239 

convection on both sides of the cylinder is asymmetric in mixed convection. However this 240 

asymmetry can be significantly suppressed by increasing the Re number alone. Meanwhile, it is also 241 

noticed that the thermal boundary layer at the front stagnation point is very thin and results in a 242 

strong temperature gradient around these local region. 243 

The periodic and alternatively shed vortices causes the continuous exchange of fluid 244 

momentum and thermal energy in wake and induces the fluctuation of the local Nu 
(θ) along the 245 
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cylinder's surface. Consequently, the most of the variation of Nu 
(θ) usually occurs around the back 246 

stagnation point of the cylinder (θ = 0° and 360°), as shown in Fig. 5. It is also found that the 247 

shedding process starts with the generation of an upper vortex blob identified by the stretching of 248 

the vorticity strand at the upper cylinder shoulder, e.g., the case of Re = 60 and Ri = 2.0. This 249 

observation agrees well with the findings of Biswas and Sarkar.38 Consequently, the value of local 250 

Nu 
(θ) fluctuates periodically around θ = 0° and 360° in Fig. 5. 251 

 252 

Figure 5. The spatial-temporal evolution of Nu 
(θ) around the cylinder's surface in mixed convection 253 

(Ri = 2) for Re number ranging from 60 to 160. 254 

The time-averaged and root-mean-square (RMS) values of the Nu number along the cylinder’s 255 

surface are plotted in Fig. 6. It shows that the value of Numean increases slowly with the increase of 256 

Ri number. Comparing with the Re number, the changes of Ri number (cross buoyancy) have very 257 

little influence on the efficiency of heat transfer across the cylinder's surface. On the other hand it 258 

is also found that the value of Numean arises significantly with the increase of Re number (stronger 259 

fluid momentum) for a particular Ri number. Moreover, as illustrated in Fig. 6(b), the value of NuRMS 260 

is found increasing linearly with the Ri number for Re = 80‒160. However, in the case of Re = 60, 261 
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the value of NuRMS increases exponentially with the Ri number instead. 262 

 263 
(a)                                     (b) 264 

Figure 6. Variation of Nusselt number along the cylinder’s surface with respect to Re and Ri numbers: 265 

(a) the variation of the time-averaged Nusselt number Numean with respect to Ri number; (b) the 266 

variation of the root-mean-square Nusselt number NuRMS with respect to Ri number. 267 

The normalized frequency amplitude spectral density (ASD) contours of Nu(θ) along the 268 

cylinder’s surface are shown in Fig. 7. It shows that the ASD contours are distributed symmetrically 269 

around the cylinder’s surface in forced convection (Ri = 0). The frequency of the dominant mode 270 

increases gradually with the increase of Re number. The second frequency component of Nu(θ) 271 

(around f* = 0.3667) also appears in the case of Re = 160 and Ri = 0 in Fig. 7. In mixed convection, 272 

similar to the results in Fig. 5, the ASD contours of Nu(θ) become asymmetric, because of the 273 

existence of cross buoyancy. It is also noticed that the amplitudes of the frequency components of 274 

the Nu(θ) mode increase progressively as the Ri number increases and are generally bounded by 0.5. 275 

Furthermore, compared with the frontal area of the cylinder (θ = 180°), the frequency spectrum of 276 

Nu(θ) is much wider around the back area of the cylinder (θ = 0° or 360°). On the other hand, the 277 

dominant frequency component around the frontal area of the cylinder is found to be f* = 0.08 in 278 

Fig. 7. In contrast, the dominant frequency component of the Nu(θ) mode around the back area of the 279 

cylinder are about f* = 0.16 instead. Furthermore, the distribution of frequency modes of local Nu(θ) 280 

is found generally symmetric on both sides of the cylinder. This observation is confirmed in the 281 

representative cases of the forced and mixed convection, in which the most of the strong frequency 282 

modes are concentrated around the back area of the cylinder where the strong mixing of fluid occurs. 283 
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 284 

Figure 7. The spatial distribution of the frequency of Nu(θ) in time domain for different Ri and Re 285 

numbers. 286 

In mixed convection, the heat convection across the cylinder's surface is affected by both Re 287 

(fluid inertia) and Ri (buoyancy) numbers. In frequency domain, Fig. 8 shows the variation of the 288 

frequency spectrum of Nu with respect to Re and Ri numbers in mixed convection flow subject to 289 

cross buoyancy. The normalized frequency amplitude spectral density (ASD) contours in Fig. 8 290 

suggest that the Ri number (thermal cross buoyancy) has limited influence on the frequency of Nu 291 
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number (heat convection across the cylinder), except for the case of Re = 60. In the case of Re = 60 292 

in Fig. 8, the strong nonlinear features in heat convection dynamics are observed and manifest as 293 

multiple frequency modes of Nu for Ri > 1.4 approximately. This observation can be confirmed 294 

from the time history of the frequency contours of Nu number computed using the wavelet 295 

scalogram in Fig. 9. In the wavelet scalogram, when the resolution of frequency is important, the 296 

Gabor wavelet can be used to plot the real part of the wavelet analysis and trace the minima and 297 

maxima of a signal.51,52 Comparing the cases of Re = 60 and Re = 160 in Fig. 9, it can be seen that 298 

the frequency contours for Re = 160 are very regular in time for different Ri numbers. In contrast, 299 

the frequency contours for Re = 60 become unsteady in time for Ri = 2.0, which agrees with the 300 

observation in Fig. 7 and Fig. 8 for the case of Re=60. Figure 9 also shows that the real-valued 301 

wavelet isolates the local minima and maxima of the frequency contours of Nu. In addition, it is also 302 

noticed that the dominant frequency of Nu in forced convection is about twice of that in the mixed 303 

convection. Compared with the analysis in literature,38 when the generation of an upper vortex blob 304 

is identified by the stretching of the vorticity strand at the upper cylinder shoulder (Ri ≥ 1 for Re = 305 

60 in this study), the overall response of heat convection becomes oscillatory in time domain and 306 

possesses multiple modes in frequency domain. 307 
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 308 

Figure 8. Variation of the frequency of Nusselt number with respect to different Ri and Re numbers, 309 

where the blue and red triangles highlight the upper and lower limit values, respectively. 310 
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 311 

Figure 9. Time history of the frequency contours of Nusselt number for different Re and Ri numbers. 312 

B. Hydrodynamic response subject to cross buoyancy 313 

The vortex dynamics in mixed convection is rich of physics, since the hydrodynamics and 314 

buoyancy effect are strongly coupled in the wake. Figure 10 shows the variations of hydrodynamic 315 

coefficients of the heated cylinder with respect to the Ri number. In this study, a number statistical 316 

quantities are defined to quantify the complexity of dynamics in mixed convection. For instance, 317 

the time-averaged hydrodynamic coefficients (C  mean 
D  and C  mean 

L ) and the root-mean-squared 318 

hydrodynamic coefficients (C RMS 
D  and C RMS 

L ) are defined as: 319 
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where N is the number of sample data in the time series. The h*cyl 
x  and h*cyl 

y  are the dimensionless 322 

traction force exerted on the cylinder in the x and y directions, respectively.  323 

Figure 10(a) and Figure 10(b) show that the values of C mean 
D and C mean 

L decrease progressively as 324 



Accepted to Phys. Fluids 10.1063/5.0119962

17 
 

the Ri number increases for Re =80‒160. In contrast the values of both C
 RMS 

D and C
 RMS 

L increase 325 

gradually for Re =80‒160 instead. However, different from the value of C mean 
D  in Fig. 10(a), the 326 

values of C
 RMS 

L  in Fig. 10(b) are very different for different Re numbers. In the cases of Re = 60, the 327 

value of C mean 
D  decreases for Ri = 0‒1 and increases for Ri = 1‒2. On the other hand, in the case of 328 

Re = 60, the value of C mean 
L  increases for Ri = 1‒1.6 and decreases for Ri = 1.6‒2. Overall, the values 329 

of both C
 RMS 

D  and C
 RMS 

L increase significantly for Ri = 1‒2. Among the three values of Ri number, 330 

the maximum value of C
 RMS 

L is found in the case of Ri = 2 and Re = 60 in Fig. 10(d). 331 

 332 
(a)                                     (b) 333 

 334 
(c)                                     (d) 335 

Figure 10. Variation of hydrodynamic coefficients with respect to Ri number: (a) the time-averaged 336 

drag coefficient C mean 
D ; (b) the time-averaged lift coefficient C mean 

L ; (c) the root-mean-square drag 337 

coefficient C
 RMS 

D ; (d) the root-mean-square lift coefficient C
 RMS 

L . 338 

Similarly, the amplitude spectral density (ASD) contours of the hydrodynamic coefficients (CD 339 

and CL) are plotted in Fig. 11 and Fig. 12. Figure 11 shows that the ASD contours of CD increases 340 

with the Ri number for the cases of a fixed Re number. On the other hand, in the canonical case of 341 
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flow over a cylinder, the periodic vortex shedding results in a periodic change of hydrodynamic 342 

forces. It is known that the plot of CD vs. CL is a typical figure "8" graph and satisfies the relationship 343 

that the dominant frequency of the CD is twice of the CL. However, in the case of mixed convection, 344 

due to the existence of cross buoyancy, the dynamics of CD consists of multiple harmonics of the 345 

fundamental frequency. By comparing Fig. 11 and Fig. 12, it is noticed that the fundamental 346 

frequency of the CD is synchronized with the CL. The second frequency component of the CD is 347 

about twice of its fundamental frequency. Furthermore, comparing the ASD contours of the drag 348 

coefficient CD in Fig. 11 and those of the heat convection Nu in Fig. 8, it is found that the dynamics 349 

of CD and Nu are also synchronized together in time domain. 350 



Accepted to Phys. Fluids 10.1063/5.0119962

19 
 

  351 

Figure 11. Variation of the frequency of drag coefficient for different Ri and Re numbers. 352 

It is know that the frequency of vortex shedding is characterized by Strouhal number. Generally, 353 

the value of St is calculated by taking the Fast Fourier Transform (FFT) of the temporal evolution 354 

of the lift force and the highest peak of the harmonics in the FFT portrait represents the 355 

corresponding St number.13 Recollecting results in Fig. 3, it can be confirmed that the value of St 356 

falls in the range of 0.136‒0.188 for Re = 60‒160. Apart from the multiple harmonics of the 357 

fundamental frequency of CD in Fig. 11, the responses of CL only consist of one dominating 358 

frequency for each Ri number in Fig. 12. It is believed that this dominating frequency component 359 
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of the CL is associated with the vortex shedding process of the heated cylinder.  360 

 361 

Figure 12. Variation of the frequency of lift coefficient for different Ri and Re numbers. 362 

To explore the evolution of the local pressure coefficient (CP(θ)) in time domain, the space–time 363 

plots of CP(θ) for Ri = 0‒2 and Re = 60‒160 are plotted in Figs. 13‒15. The similar results were 364 

reported recently by Chopra and Mittal in the past.53 It was found that the dynamics of vortex 365 

shedding is a periodic process with alternating values of low and high pressure.53 In this study, it is 366 

also realized that as the vortex shedding frequency St increases, the fluctuation of CP(θ) in Fig. 13 367 

also increases in the case of forced convection (Ri = 0).  368 
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 369 

Figure 13. The space-time variation of the pressure coefficient (CP(θ), t) around the cylinder’s surface 370 

for Ri = 0 (forced convection). 371 

Different from the case of forced convection, the wake behind the cylinder becomes 372 

significantly asymmetric due to the existence of cross buoyancy in mixed convection. Consequently, 373 

the pressure distributions along the cylinder's surface for Ri = 1-2 and Re = 60‒160 are asymmetric 374 

in Figs. 14‒15 in this study. It is found that the pressure on the lower side of the cylinder is lower 375 

than those on upper side. Hence it results in the negative values of C mean 
L . Therefore, as shown in Fig. 376 

10(b), the higher the value of Ri number is, the larger the difference of CP(θ) between the upper and 377 

lower sides of cylinder is and the smaller the value of C mean 
L  becomes. For the cases of the same Ri 378 

number, the symmetry of the CP(θ) distribution on the upper and lower sides of the cylinder is 379 

enhanced as the Re number increases. Similar to the cases of forced convection in Fig. 13, as Re 380 

number increases, the oscillation of local CP(θ) distribution along the cylinder’s surface becomes 381 

stronger. This implies that the occurrence of vortex shedding and a large value of C
 RMS 

L . 382 

 383 
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 384 

Figure 14. The space-time variation of pressure coefficient (CP(θ), t) around the cylinder surface for 385 

Ri = 1. 386 

 387 
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Figure 15. The space-time variation of pressure coefficient (CP(θ), t) around the cylinder surface for 388 

Ri = 2. 389 

Compared with the normalized frequency distribution of Nu(θ) in Fig. 7, the fundamental 390 

frequency of the CP(θ) in the case of Ri = 2 in Fig. 16 is about twice of Nu(θ). Similar to the ASD 391 

contours of the drag coefficient CD in Fig. 11, it is believed that the second frequency component of 392 

the CD is closely associated with the dominant frequency component of CP(θ), the origin of the form 393 

drag. In addition, it is also found that the amplitude of the CP(θ) is bounded between 0‒0.5 uniformly. 394 

The dominant frequency will increase progressively with the increase of Re number for the cases of 395 

the same Ri number. On the other hand, it is also realized that the amplitude of frequency component 396 

of CP(θ) increases gradually with the increase of Ri number for the cases of the same Re number, and 397 

the frequency bandwidth is increasing as well. 398 
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 399 

Figure 16. The spatial distribution of the frequency component of CP(θ) for different Ri and Re 400 

numbers. 401 

C. Characteristics of fluid kinetic energy and thermal energy in wake 402 

In this session, the transportation of fluid kinetic energy and thermal energy in fine scale in 403 

forced and mixed convection are studied. The normalized time-averaged velocity field u* 
mean and v404 

* 
mean, and the time-averaged temperature field T* 

mean are defined as: 405 
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Where N is the number of sampled data in the time series. u* 
i , v* 

i  and T* 
i  are the dimensionless 407 

streamwise velocity component, transverse velocity component and temperature fields, respectively.  408 

In forced convection (Ri = 0), the coherent structures of the vortex dynamics and thermal diffusion 409 

in wake are symmetric. Although in mixed convection (Ri > 0), Fig. 17 shows that the cross 410 

buoyancy effect has a limited effect on the length of the recirculation region. However, as Ri number 411 

increases, the strong asymmetries are observed in the velocity and temperature fields due to the 412 

existence of cross buoyancy, e.g. the mean streamwise velocity component, the asymmetric flux of 413 

mean transverse velocity component in wake and the heat convection in wake in Fig. 17.  414 

 415 

Figure 17. Contours of the normalized time-averaged flow field at Re = 100. 416 

Besides the study of the mean flow, the study of Reynolds stresses provides an analytical 417 

approach to quantify the dynamics of the cascades of the fluid kinetic energy and thermal energy in 418 

fine scale in wake and the characteristics of the associated fluid stability. Based on the Reynolds 419 

decomposition, the Reynolds stresses can be computed as:  420 

* * *
m eani iu u u   ; * * *

m eani iv v v   ; * * *
m eani iT T T                    (6) 421 
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where the ( *
iu  , *

iv  , *
iT  ) is the fluctuating component. Various Reynolds averaged quantities 422 

(Reynolds normal stresses: u * u *   , v * v *    and the shear stresses: u * v *    are calculated). 423 

Similarly, the streamwise ( u * T *   ) and the transverse ( v * T *   ) velocity-temperature 424 

correlations are also computed, because these quantities are associated with the cascade of 425 

thermal energy transported by the fine-scale streamwise and transverse fluid fluctuations in wake. 426 

Refer to Zafar and Alam's definition,54 they are defined as : 427 
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Figure 18(a) shows the contours of Reynolds normal stress u * u *   for the cases of Ri = 0, 1, 433 

2.0 and Re = 60, 100, 160. It is observed that there are two peaks in the contour of u * u *   in the 434 

wake behind the cylinder. These peaks are associated with the strong vortices formed by the 435 

separated boundary layers from the upper and lower sides of the cylinder.54 In forced convection, 436 

the peaks of u * u *    are symmetric about the streamwise centerline. As the Ri number keeps 437 

increasing, Fig. 18(a) shows that the fluid kinetic energy is further transferred by the fine-scale fluid 438 

fluctuation upward in wake because of the cross-buoyancy effect. Furthermore, Fig. 18(b) also 439 

shows that the cascade of fluid kinetic energy, a large value of maxu * u *  , is much more stronger in 440 

the case of larger Ri number and smaller Re number. In these cases, the wake is more prone to be 441 

‘turbulent’, because of the presence of strong thermal cross-buoyancy against a weaker fluid inertia. 442 

Especially when Re < 100 and Ri > 1, the value of the maxu * u *   increases proportionally with the 443 

Ri number.  444 
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 445 
(a) 446 

 447 
(b) 448 

Figure 18. Reynolds normal stresses: (a) contours of the Reynolds normal stresses u * u *    for 449 

different Re numbers; (b) variation of the maximum Reynolds normal stresses maxu * u *    with 450 

respect to Ri number. 451 

The longitudinal distance from the cylinder center to the maxu * u *   coincides with the vortex 452 

formation length L* 
f  (= L 

f/D) and width W* 
f  (= W 

f/D), as marked in Fig. 18(a). Zafar and Alam55 453 

illustrates that the vortex formation length L* 
f  may have a great influence on the value of Numean 454 

along the cylinder’s surface since a shorter L* 
f  means that the core of the recirculating flow is close 455 

to the cylinder and results in a higher value of Numean. Based on this discussion, it is believed that 456 

the NuRMS along the cylinder’s surface is also effected, as shown previously in Fig. 6. Furthermore, 457 
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it is shown by the peaks of u * u *   in Fig. 18(a) that the distribution of Reynolds normal stresses 458 

are symmetric about the streamwise centerline in forced convection. Whereas this symmetry breaks 459 

down in mixed convection, because of the presence of strong cross buoyancy. As a result, the vortex 460 

formation length L* 
f  and width W* 

f  on upper and lower side of the cylinder are also asymmetric in 461 

mixed convection. A summary of influence of thermal cross buoyancy on the vortex formation 462 

length L* 
f  and width W* 

f  is plotted in Fig. 19, in which the values of L* 
f  and width W* 

f  on both the 463 

upper and the lower sides of the cylinder (the solid line for the upper side, the dotted line for the 464 

lower side) are presented. It can be seen that the value of L* 
f  keeps reducing as the cross-buoyancy 465 

effect becomes stronger and implies a stronger heat convection over the cylinder’s surface. On the 466 

other hand, the overall width W* 
f  does not change remarkably as the Ri number increases. 467 

 468 
(a)                                     (b) 469 

Figure 19. Variation of (a) normalized vortex formation length L* 
f  and (b) wake width W* 

f (= y* 
1 - y* 

2 ) 470 

with respect to Ri number, where y* 
1  (solid line) and y* 

2  (dotted line) represent the distance from the 471 

upper and lower peak of u * u *   to the wake centerline, respectively. 472 

In contrast to the Reynolds normal stress, the contours of Reynolds transverse stress v * v * 473 

manifests itself as a single peak in wake. In forced convection (Ri = 0), the distribution of v * v * 474 

is symmetric and located along the streamwise centerline of cylinder. Whereas the distribution of 475 

v * v *   becomes asymmetric and deflects upward in mixed convection in Fig. 20(a). The peak value 476 

of v * v *   shifts to the lower side as the Ri number increases.54 Similarly to the maximum Reynolds 477 

normal stress maxu * u *  , the maximum transverse stress maxv * v *   increases significantly with 478 

the increase of Ri number for Re = 60-80, and grows gradually for Re = 100‒160 in Fig. 20(b). It is 479 

also found that the lateral spread of v * v *   becomes narrow for Ri = 0 and is enlarged as the Ri 480 
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number further increases. 481 

 482 
(a) 483 

 484 
(b) 485 

Figure 20. Reynolds transverse stresses: (a) contours of the Reynolds transverse stresses v * v *   486 

for different Re numbers; (b) variation of the maximum Reynolds transverse stresses maxv * v *   487 

with respect to Ri number. 488 

Figure 21(a) displays the variation in Reynolds shear stress u * v *   with respect to Ri and Re 489 

numbers. The value of u * v *   gives a degree of correlation between the streamwise and transverse 490 

fluctuating velocity components. It is found that the contours of u * v *    is symmetrically 491 

distributed along the centerline in wake in force convection (Ri = 0), but becomes asymmetric in 492 

mixed convection in Fig. 21(a) because of the presence of cross buoyancy. Two peaks of u * v *   493 
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contour emerge in the field because of the alternative vortex shedding process. The values of 494 

maxu * v *   increases significantly with the increase of Ri number for Re = 60 and 80, and grows 495 

gradually for Re = 100‒160 in Fig. 21(b). 496 

 497 
(a) 498 

 499 
(b) 500 

Figure 21. Reynolds shear stresses u * v *  : (a) contours of u * v *   for different Re numbers; (b) 501 

variation of the maximum value maxu * v *   with respect to Ri number. 502 

Figure 22(a) shows the distribution of u * T *   contours for different Ri and Re numbers. 503 

Similar to the Reynolds normal and transverse stresses, the contours of u * T *   are symmetrically 504 

distributed in wake in forced convection (Ri = 0) and asymmetrically distributed in mixed 505 

convection (Ri > 0) in Fig. 22(a). For Ri = 0, a strong peak (positive) and a small peak (negative) 506 
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form on each side of the cylinder. The streamwise positions of the positive peak match with that of 507 

Reynolds normal stress u * u *   in Fig. 18. It means that the heat convection in wake is primarily 508 

driven by the vortex shedding and fluid momentum in forced convection.55 However, this conclusion 509 

does not apply to the cases of low Re number and high Ri number in this study. In accordance to the 510 

study in the literature,38 it is believed that when the formation of an upper vortex blob originates 511 

from the stretching of the vorticity strand at the upper cylinder shoulder (Ri ≥ 1 for Re = 60, in this 512 

study), the entire heat convection becomes unsteady and oscillates in time. This results in a dynamics 513 

of mixing process involving multiple frequency components, as shown previously in Figs. 7‒9. In 514 

addition, Fig. 22(b) also shows that the values of maxu *T *    increases significantly with the 515 

increase of the Ri number for Re = 60 and 80, and grows gradually for Re = 100‒160. 516 

 517 
(a) 518 
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 519 
(b) 520 

Figure 22. The time-averaged heat fluxes in the streamwise direction ( u * T *  ): (a) contours of 521 

u * T *   for different Re numbers; (b) variation of the maximum value maxu *T *   with respect to 522 

Ri numbers. 523 

In terms of the thermal energy dissipation in the transverse direction, Fig. 23(a) shows that the 524 

positive and negative contours of v * T *  appear in pairs in wake, a positive peak on the upper side 525 

and a negative peak on the lower side of the cylinder. It means that the fluid momentum brings in 526 

more cold fluid into the wake towards the centerline behind the cylinder. It can be seen that the 527 

contour of v * T *   is symmetrically distributed in wake in forced convection (Ri = 0) and 528 

asymmetrically distributed in mixed convection (Ri > 0) as shown in Fig. 22(a). As Ri number 529 

increases in the cases of Re = 60‒160, the positive peak of v * T *  contour is strengthened and 530 

stretched upward due to the thermal cross-buoyancy effect. Whereas the negative contour of 531 

v * T *  is vanishing instead. It means that there is a stronger heat exchange happening on the upper 532 

side of the cylinder. A summary of the dependency of maxv * T *   on the Ri number is plotted in 533 

Figure 23(b). It shows that the value of maxv * T *   increases significantly with the Ri number for 534 

Re = 60 -80, and grows gradually for Re = 100‒160 instead. 535 
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 536 
(a) 537 

 538 
(b) 539 

Figure 23. Time-averaged heat fluxes in the transverse direction ( v * T *   ): (a) contours of 540 

v * T *   for different Re numbers; (b) variation of the maximum value maxv * T *   with respect to 541 

Ri number. 542 

Figure 24 shows the variation of the boundary layer separation points with Ri, where θs1 and 543 

θs2 represent the locations of the upper and lower separation points, respectively, measured from the 544 

rear stagnation point. On account of the crossflow thermal buoyancy, the two separation points are 545 

asymmetrically distributed in mixed convection (Ri > 0). For the same Re, the values of θs1 at Ri > 546 

0 are generally smaller than that at Ri = 0. In contrast, the value of θs2 gradually increases with Ri at 547 

the same Re. Consequently, the asymmetrical recirculation region and wake are generated behind 548 
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the cylinder in mixed convection. Particularly, θs2 reaches 180° at Ri = 2.0 when Re = 60, signifying 549 

the separation point of the lower boundary layer shifts to the front stagnation point. It implies that 550 

the thermal buoyancy at Ri = 2.0 overcomes the inertia force at Re = 60. The same phenomenon was 551 

observed by Biswas and Sarkar.38 552 

 553 

Figure 24. Variation of the boundary layer separation points with Ri. 554 

D. Dynamic mode decomposition 555 

In this section, a modal analysis is conducted based on the dynamic mode decomposition 556 

(DMD) technique so as to extract the spatial-temporal modes that play an important role in flow and 557 

heat convection processes. Since the application of DMD technique in fluid flow, it has been widely 558 

accepted in the fluid community for modal analysis of flow field, especially the isothermal flow 559 

over a bluff body.56 In this study, one of the primary focus is to explore the fundamental mechanism 560 

in fluid-thermal-solid interaction by extracting the dominant spatial-temporal modes. 561 

Figure 25(a, b) shows that the step-by-step procedures to apply the DMD algorithm on the 562 

spanwise vorticity 
Z  in forced convection (Ri = 0) and mixed convection (Ri = 2), respectively. 563 

Unlike the proper orthogonal decomposition (POD), the DMD algorithm can not only extract the 564 

spatial-temporal modes but also a set of eigenvalues associated with each one of them to 565 

approximate their temporal characteristics, e.g., delay or growth. The mean flow mode is not 566 

subtracted in the DMD calculation in this study. Therefore, the first mode (shown as mode1 in the 567 

DMD process) presents the background mode (mean flow) that does not change in time (i.e., it has 568 

zero eigenvalue), as shown in Fig. 25. 569 

For the case of forced convection in Fig. 25(a), it is found that the spatial distribution of the 570 
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DMD modes are symmetric and similar to the Bagheri's simulation works57 and Tu et al.'s 571 

experimental results43. Figure 25(a) further demonstrates that the first 9 modes account for the 99.00% 572 

of cumulative energy. As a result, the vorticity structure reconstructed by these modes is able to 573 

precisely approximate the original field data. However, due to the influence of thermal cross 574 

buoyancy, it is noticed in Fig. 25(b) that the spatial distribution of DMD modes is asymmetric in 575 

wake in mixed convection (Ri = 2). Furthermore it is also noticed that the first 12 DMD modes 576 

account for 99.02% of the cumulative energy in the case of mixed convection. The requirement of 577 

relatively more DMD modes means that stronger non-linear features exist in wake compared with 578 

the case of forced convection. Consequently more linear DMD modes are required to accurately 579 

reconstruct the original vorticity field in mixed convection. 580 

 581 
(a)                                     (b) 582 

Figure 25. Schematic diagram of the data processing with DMD algorithm for the spanwise vorticity 583 

ωz for (a) Ri = 0 and (b) Ri = 2. 584 

The value of k in DMD algorithm is an important parameter. Normally the condition σk(%) ≥ 585 

99.0% (k < 15) is chosen to determine a suitable value of k to accurately reconstruct the original 586 

field data. Based on the aforementioned criteria, the spatial distribution of the DMD modes of the Z 587 

vorticity (ωz) field is presented in Fig. 26. It is observed that when Ri > 1, the cumulative energy 588 

σk(%) of the first 14 modes cannot reach 99% for Re = 60 because of the existence of strong cross 589 
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buoyancy. Therefore, it is believed that the much stronger nonlinear features exist in mixed 590 

convection and require more linear DMD modes to reconstruct the original field. The modal analysis 591 

in the case of Ri = 2 and Re = 80 also agree with this observation. This can also be linked to the 592 

aforementioned multiple harmonics characters of C
 RMS 

L in Fig. 10(d) and the ASD contours of CL in 593 

Fig. 12, in which multiple modes are induced by cross-buoyancy effect in frequency domain. In 594 

addition, it is also found that the energy of the first DMD mode decreases with the increase of Ri 595 

number in the case of the same Re number. On the other hand, the number of DMD modes required 596 

to reconstruct the original field data is also found increased as Re number increases in the case of 597 

the same Ri number. 598 
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 599 

Figure 26. Dependence of σk (%) on the value of k for the spanwise vorticity ωz field. 600 

In terms of the normalized temperature field T*, Fig. 27(a, b) shows that the modal analysis 601 

conducted for the T* field in forced convection (Ri = 0) and mixed convection (Ri = 2), respectively. 602 

As shown in Fig. 27(a), the first 9 modes account for 99.30% of the cumulative and represents an 603 

accurate reconstruction of the temperature field. However, due to the influence of cross-buoyancy 604 

effect, for instance the case of Ri = 2, the instantaneous temperature field and the associated DMD 605 

modes are significantly perturbed and asymmetrically distributed in space. Furthermore, it is also 606 

noticed that the first 10 modes of T* account for 99.00% of the cumulative energy in mixed 607 

convection, which is slightly higher than those in forced convection. It suggests that there exist 608 
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stronger the nonlinear features in the temperature field. Whereas, compared with the spanwise 609 

vorticity field in Fig. 25(b), the normalized temperature field requires less DMD modes to 610 

reconstruct the original field data instead. 611 

 612 
(a)                                     (b) 613 

Figure 27. Schematic diagram of the data processing with DMD algorithm for the normalized 614 

temperature (T*) for (a) Ri = 0 and (b) Ri = 2. 615 

The spatial distribution of the DMD modes of the normalized temperature (T*) field can be 616 

found in Fig. 28. Analogous to the criteria used to determine the value of k for the vorticity field, a 617 

suitable value of k is also chosen to reconstruct the instantaneous temperature field based on the 618 

criteria σk (%) ≥ 99.0% (k < 15). Figure 28 shows that when Ri > 1, the cumulative energy σk (%) of 619 

the first 14 modes cannot reach 99% for Re = 60. It means that stronger nonlinear feature exist in 620 

the temperature field for the wake subject to the cross-buoyancy effect and more linear DMD modes 621 

are required to accurately reconstruct the original temperature field. The same conclusion applies 622 

for the case of Ri = 2 and Re = 80 as well. 623 

Similar to the discussion of ωz field, an appropriate value of k parameter should be chosen for 624 

the reconstruction of T* field in advance. Overall, Fig. 28 shows that a higher value of k (more DMD 625 

modes) should be chosen for a larger Ri number (strong cross buoyancy) to accurate reconstruct the 626 

original temperature field. On the other hand, it is also realized that influence of the cross-buoyancy 627 
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effect is weakened as the fluid inertia force keeps increasing (higher Reynolds number). This can 628 

be observed from the curves in Fig. 28, which are converging for different values of Ri numbers. 629 

Overall, it is found that the value of k > 15 can return an accurate approximation of the original field 630 

data in this study. 631 

 632 

Figure 28. Dependence of σk (%) on the value of k for the normalized temperature T* field. 633 

IV. CONCLUSIONS 634 

Flow over a heated circular cylinder is a canonical issue in thermal engineering. In comparison 635 

with the isothermal fluid flow, the buoyancy effect introduced by mixed convective flow may 636 

enhance the hydrodynamic instability of a circular cylinder and hence complicated flow regimes in 637 
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wake. To investigate the hydro- and thermo-dynamic characteristics of a circular cylinder, a 638 

numerical study was conducted to investigate the complex mechanism of vortex dynamics in wake 639 

and the heat convection along a heated cylinder in mixed convection flow subject to cross buoyancy 640 

at Pr = 0.71, Re = 60‒160, and Ri = 0‒2.0. The employed numerical formulation was validated with 641 

the numerical and experimental data in literature. 642 

Since the cross-buoyancy effect is negligible in forced convection (Ri = 0), similar to the 643 

isothermal fluid flow, it was found that both the distributions of Nu mean 
(θ)  and CP(θ) along the cylinder's 644 

surface and the wake structure are symmetric, including the fluid momentum and thermal energy 645 

transport (u* 
mean, v

* 
mean, T

* 
mean, u * u *  , v * v *  , u * v *  , u * T *   and v * T *  ). In contrast, because 646 

of the presence of thermal cross buoyancy in mixed convection (Ri > 0), the wake behind a heated 647 

cylinder became significantly asymmetric and deflected against the gravitational direction. In mixed 648 

convection, the heat convection across the cylinder's surface is affected by both Re (fluid inertia) 649 

and Ri (buoyancy) numbers. In comparison with the Re number, the change of Ri number has less 650 

influence on the efficiency of heat transfer across the cylinder's surface. Nevertheless, the value of 651 

NuRMS increases exponentially with the Ri number at Re = 60, where the thermal buoyancy 652 

overcomes the inertia force with the results of strong nonlinear features and multiple frequency 653 

modes. The maximum C
 RMS 

L of 0.96 is found in the case of Ri = 2 and Re = 60. Due to the thermal 654 

cross buoyancy, multiple harmonics exist in the frequency domain for the dynamics of Nu 
(θ), Nu, CD 655 

and CL. The fundamental frequency of CD is synchronized with the CL and the second frequency 656 

component is about twice of the fundamental one. Furthermore, the dynamics of CD and Nu are 657 

synchronized together in time domain, suggesting the strong coupling between the hydrodynamics 658 

and buoyancy effects. The pressure on the lower side of the cylinder is lower than that on the upper 659 

side, resulting in the negative value of C mean 
L . The higher the value of Ri number, the smaller the 660 

value of C mean 
L . 661 

By quantifying the Reynolds stresses, the cascade of fluid kinetic energy and thermal energy 662 

via the fine-scale fluid fluctuation in wake were studied. As Ri number increases, amplified 663 

asymmetries are observed in both the velocity and temperature fields. Larger Reynolds stresses are 664 

observed in the cases of larger Ri number and smaller Re number, indicating the presence of strong 665 

thermal cross-buoyancy against a weaker fluid inertia. As the cross-buoyancy effect becomes 666 
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stronger, the vortex formation length is reduced, contributing to the enhanced NuRMS and C
 RMS 

L .  667 

A number of dominant spatial-temporal modes of vorticity and temperature fields were 668 

extracted by applying the dynamic mode decomposition technique. It was realized that stronger 669 

nonlinear features exist in the wake in mixed convection subject to cross buoyancy as Ri number 670 

increases, compared with the forced convection. For the reconstruction of spanwise vorticity field 671 

at Ri = 2 and Re = 100, the first 9 DMD modes account for 99.00% of the cumulative energy in the 672 

case of forced convection, while the first 12 DMD modes are required in mixed convection. The 673 

energy of the first DMD mode decreases with the increase of the Ri number. The same phenomenon 674 

is found in the reconstruction of temperature field. 675 

In general, the present study reports an insight into the hydro- and thermo-dynamic 676 

characteristics of a heated circular cylinder in mixed convection subject to cross buoyancy. The 677 

numerical results may provide references for the design of heat exchange tubes and the operation of 678 

exchangers. 679 
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