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A numerical investigation of the vortex-induced vibration (VIV) in a side-by-side
circular cylinder arrangement has been performed in a two-dimensional laminar
flow environment. One of the cylinders is elastically mounted and only vibrates in
the transverse direction, while its counterpart remains stationary in a uniform flow
stream. When the gap ratio is sufficiently small, the flip-flopping phenomenon of
the gap flow can be an additional time-dependent interference to the flow field. This
phenomenon was reported in the experimental work of Bearman and Wadcock [“The
interaction between a pair of circular cylinders normal to a stream,” J. Fluid Mech.
61(3), 499–511 (1973)] in a side-by-side circular cylinder arrangement, in which the
gap flow deflects toward one of the cylinders and switched its sides intermittently.
Albeit one of the two cylinders is free to vibrate, the flip-flop of a gap flow during
VIV dynamics can still be observed outside the lock-in region. The exact moments
of the flip-flop phenomenon due to spontaneous symmetry breaking are observed in
this numerical study. The significant characteristic vortex modes in the near-wake
region are extracted via dynamic modal analysis and the interference between the
gap flow and VIV is found to be mutual. In a vibrating side-by-side arrangement,
the lock-in region with respect to reduced velocity becomes narrower due to the
interference from its stationary counterpart. The frequency lock-in occurs and ends
earlier than that of an isolated vibrating circular cylinder subjected to an identical
flow environment. Similar to a tandem cylinder arrangement, in the post-lock-in
region, the maximum vibration amplitudes are escalated compared with those of an
isolated circular cylinder configuration. On the other hand, subjected to the influence
from VIV, the biased gap flow deflects toward the vibrating cylinder quasi-stably
during the frequency lock-in process. This behavior is different from the reported
bi-stable regime in a stationary side-by-side arrangement. The analyses show that
the flip-flop is associated with a characteristic low flip-flopping frequency, which is
dependent upon the values of gap ratio, Reynolds number and the symmetry of the
gap flow strength in a time-averaged sense. The disappearance of the flip-flop during
the frequency lock-in of vibrating side-by-side arrangements is further investigated
through a critical-point concept and a critical vortex merging distance. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4968587]

I. INTRODUCTION

Offshore structures exhibit a great variety of flow-induced vibrations, which pose severe chal-
lenges to the design and operation because of the occurrence of large amplitudes and loads. When
the structure is free to vibrate in the transverse direction, a strong non-linear coupling between
the motion of the structure and the wake vortices exists. A side-by-side canonical arrangement
is common in offshore engineering applications, for example, a floating production, storage, and
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offloading (FPSO) operation, arrays of risers and pipelines, ships travelling in rows within close
proximity, and many other side-by-side operations. Chaotic fluctuation and large vibration may
occur when two bluff bodies are placed closely. It often causes inevitable damage and potential risk
to the offshore structures and may lead to a collision or long-term fatigue failure associated with
vortex-induced vibrations and other self-excited instabilities. The phenomenon of vortex-induced
vibration (VIV) results in a complex evolution of the shedding frequency which deviates from
the Strouhal relation as approaching the natural frequency of the structure, which is referred
to as a lock-in of the vortex shedding frequency to the structural frequency. The lock-in range
corresponds to a large amplitude oscillatory motion of the bluff body, which is of a practical
importance in offshore and marine structures. In most offshore engineering applications, multi-
ple structures are far more common than an isolated structure. The flow patterns and forces are
strongly dependent upon the arrangement and the distances between these multiple structures.2

Furthermore, there is a considerable difference between the fluid-structure coupled response of an
isolated cylinder arrangement and multiple cylinder arrangements as a result of the complex effects
of vortex-to-vortex, vortex-cylinder, and gap flow interactions. Of particular interest in this work is
to understand the dynamics of side-by-side interactions in a uniform flowing stream. We consider
the flow around two cylinders in both stationary and vibrating conditions as an idealized model to
investigate the effects of side-by-side operations in a practical scenario.

A number of excellent experimental and numerical investigations have been conducted in terms
of an isolated circular cylinder2 and multiple circular cylinders in a tandem,3–5 side-by-side,6,7 and
staggered arrangement.8 Among these canonical arrangements in industrial applications, the vortex-
induced-vibration (VIV) is one of the important factors causing failures and drawing research inter-
est in improving the design and performance of offshore structures. VIV had been investigated by
many authors9,10 in the past several decades. Its importance to the industry led to numerous scien-
tific researches in the comprehensive reviews.11–18 However, it is still deemed as a challenge, owing
to its complexities pertaining to mechanism, operating environment, and available experimental
and numerical analyses. A multi-cylinder system is also common in various civil, mechanical,
and nuclear engineering applications. The system poses problems and potential failures when its
designed parameters and/or environment factors alter. Understanding the coupling effects between
VIV and proximity interference is paramount, and numerous scientific articles were published and
reported with regard to the interferences and resultant flow regimes in multi-cylinder systems for
basic canonical arrangements.8,19–22 Particularly flow-induced vibrations in a cross-flow problem
caused by the adjacent cylinders are complicated to deal with, especially when the flip-flop is
involved in a side-by-side arrangement. During the flip-flop of the gap flow, the gap flow could not
maintain its straight path and has a tendency to deflect intermittently with new asymmetric states.
This spontaneous broken symmetry is associated with a new kind of fluctuation. This phenomenon
was reported in the pioneering works of Bearman and Wadcock,1 Ishigai et al.,23 Williamson,24

and Kim.25 It has been noticed that the wake behind a stationary side-by-side circular cylinder is
asymmetric, and the gap flow between the two cylinders is deflected either upward or downward for
gap ratio g∗ = g/D ∈ 0.3 − 1.25 approximately in a laminar flow, where g is the separation distance
between the cylinders and D denotes the diameter of each cylinder.

Within such a small gap ratio, the near-wake region is significantly interfered by the presence
of adjacent bluff bodies. Generally speaking, these interference effects in cross-flow problems of
cylinders can be classified into two categories, namely proximity interference and wake interfer-
ence. In the wake interference, the nearby cylinders are downstream and further away from the
near-wake region of the upstream one. Those wakes exert periodic perturbations, e.g., vorticity and
turbulence, upstream of the nearby cylinders, and influence the flow around the nearby cylinders.
This is particularly important for the tandem and staggered arrangements of bluff bodies. While in
the proximity interference, e.g., g∗ . 3 or 4 in a side-by-side arrangement at the laminar flow,2 the
presence of other bluff bodies affects the vortex formation and vortex-shedding process of the one
under investigation.26 Therefore, the influence on the dynamics of structure is very significant due
to the presence of other body. As a result, numerical investigations in the present work are limited
between gap ratio g∗ ∈ 0.3 − 2.5, particularly g∗ ∈ 0.3 − 1.25, in which the proximity-interference
and flip-flop phenomena with the symmetry breakdown are paramount. For a bi-stable regime of
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the flip-flop, the disparate values of force coefficients, frequencies, and the phase angles on each
cylinder can be noticed explicitly. Owing to the unbalanced near-wake regions caused by this asym-
metry, the vortex shedding frequency, f vs, is different in each cylinder which is referred to as the
two-frequency regime.27

Recently, the VIV of a circular cylinder near a stationary wall has been studied by Tham
et al.,28 in which the dynamics of the isolated cylinder is subjected to the proximity-interference and
the gap flow from the nearby stationary wall. As an analogous case where two cylinders are placed
in a side-by-side arrangement, the proximity interference imposes different dynamical characteristic
which leads to a change in the trend of the vibration amplitude and frequency domain of the cylinder
with respect to the reduced velocity. As reported by Tham et al.,28 the streamwise oscillation was
enhanced as compared to that of an isolated cylinder case, as the influence of the boundary layer
from the stationary wall. A third response branch was also found within the lock-in region. On
the contrary, the flip-flop and frequency-superimposition from the adjacent cylinder in side-by-side
arrangements are additional interferences to the near-wake region. The exiting stream of the flow
through the cylinder-cylinder gap and cylinder-wall behaves differently, whereby the existing jet
of the side-by-side cylinders shows the oscillatory pattern involving a bi-stable regime along the
centerline location. It is also noteworthy that the existing experimental studies of the proximity
interference are conducted at a higher Reynolds number. In our previous studies,5,28 it was shown
that the essential aspects of the fluid-structure interaction (FSI) and VIV dynamics can be analyzed
numerically at lower Re.

Ishigai et al.23 and Kim25 reported that the biased gap flow between a stationary side-by-side
cylinder is bi-stable and switches intermittently through a strong bimodal distribution associ-
ated with the spontaneous symmetry breaking. In the present investigation, we consider a special
side-by-side circular cylinder arrangement which incorporates an elastically mounted cylinder.
Therefore, the coupling between VIV and the gap flow is introduced for the first time. Our study is
based on the two questions on the coupled stability exchanges between the VIV dynamics and gap
flow interactions. Is there a link between the gap flow with the lock-in frequency resonance? How
will the frequency synchronization process affect the gap flow in the vibrating side-by-side cylinder
arrangement during the lock-in? It is known that the flip-flop is a highly sensitive bi-stable phenom-
enon and is directly related to the interaction dynamics of the downstream coherent vortex patterns
with the gap flow between the cylinders. Although the cylinder still vibrates within 0.3 . g∗ . 1.25,
it is believed that the mechanism is different from that of a stationary side-by-side arrangement
based on the comparison of the characteristics of the deflected gap flow regime and flip-flop dy-
namics. To analyze the interaction dynamics and the coupled stability exchanges, we employ recent
data analysis techniques namely, Hilbert-Huang Transformation (HHT)29 and Sparsity-Promoting
Dynamic Mode Decomposition (SP-DMD)30 in frequency and time domains. These techniques are
able to decompose the complex data sets and reveal their temporal information of a non-linear dy-
namic fluid-structure problem, e.g., the instantaneous phase angle and frequency, influential modes,
and decay/growing rate of amplitude. They can allow to explore the hidden physical mechanisms
of various complex dynamical phenomena. In the present work, HHT is used to analyze the instan-
taneous phase angle relationships among variables to study the net energy transfer. Through the
SP-DMD technique, the dominant DMD modes will be identified to study the stability of the flow
field and distinguish the particular DMD modes which are related to the deflected gap flow regime
and flip-flop instability associated with the symmetry breaking.

The organization of the article is as follows. The mathematical formulation and the post-
processing tools are described in Sec. II. This is followed by the problem description and verifi-
cation of numerical schemes in Sec. III. In Sec. IV, we next present the characterization of the
response dynamics of side-by-side cylinders and discuss the flow physics of the flip-flop phenom-
enon and VIV in terms of wake topology, response characteristics, force components, phase rela-
tions, and frequency characteristics. In the end, we provide the concluding remarks.
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II. MATHEMATICAL FORMULATION

A. Governing equation

A numerical scheme implementing Petrov-Galerkin finite-element and semi-discrete time step-
ping is adopted in the present work to investigate the interaction of incompressible viscous flow
with rigid-body dynamics.31–33 The incompressible Navier-Stokes equations are used in the arbi-
trary Lagrangian-Eulerian (ALE) reference frame and formulated in the following form:

ρf
(
∂uf

∂t
����x
+

�
uf − w

�
· ∇uf

)
= ∇ · σf + bf onΩf(t), (1)

∇ · uf = 0 onΩf(t), (2)

where uf = uf(x, t) and w = w(x, t) are the fluid and mesh velocities, respectively. In Eq. (1), the
partial time derivative with respect to the ALE referential coordinate x is constant. Here bf repre-
sents the body force per unit mass and σf is the Cauchy stress tensor for a Newtonian fluid which is
defined as

σf = −pI + µf
(
∇uf +

�
∇uf�T

)
, (3)

where p, µf, and I are the hydrodynamic pressure, the dynamic viscosity of the fluid, and the iden-
tity tensor, respectively. A rigid-body structure submerged in the fluid experiences unsteady fluid
forces and consequently may undergo flow-induced vibrations if the body is mounted elastically. To
simulate the translational motion of a rigid body about its center of mass, the equation along the
Cartesian axes is given by

m · ∂us

∂t
+ c · us + k · (ϕs (z0, t) − z0) = Fs + bs on Ω

s, (4)

where m, c, k, Fs, and bs are the mass, damping coefficient, and stiffness coefficient vectors for
the translational motions, fluid traction, and body forces on the rigid body, respectively. Here Ωs

represents the domain occupied by the rigid body and us (t) represents the velocity of the immersed
rigid body. The fluid and the structural equations are coupled by the continuity of velocity and
traction along the fluid-structure interface.

The new position of the rigid body is updated through a position vector ϕs, which maps the
initial position z0 of the rigid body to its new position at time t. Let γ be the Lagrangian point on
Γ and its corresponding mapping position vector to the new position after the motion of the rigid
body is ϕ(γ, t) at time t. Since the position and flow field around the moving rigid body is updated
continuously, the no-slip and traction continuity conditions should be satisfied on the fluid-body
interface Γ,

uf (ϕs(z0, t), t) = us (z0, t) , (5)
ϕ(γ, t)

σf (x, t) · ndΓ +

γ

FsdΓ = 0, ∀γ ∈ Γ, (6)

where n is the outer normal to the fluid-body interface. The characterization of the moving fluid-
body interface is constructed by means of the ALE technique. The movement of the internal ALE
nodes is constructed by solving a continuum hyperelastic model for the fluid mesh such that the
mesh quality does not deteriorate as the displacement of the body increases. For the spatial and
material mapping problem, we use classical Neo-Hookean material properties for the ALE varia-
tional formulation, which does not entail any additional user-defined remeshing parameter. A parti-
tioned iterative scheme based on a non-linear interface force correction32 is employed to solve the
fluid-rigid body interaction. The coupled fields are updated explicitly, and the interface force correc-
tion is formed at the end of each fluid sub-iteration. The scheme relies on a dynamic interface force
sequence parameter for stabilizing the coupled fluid-structure dynamics with strong added-mass
effects.32,33 The temporal discretization of both the fluid and the structural equations is formulated
in the generalized-α framework, and identical order of interpolation has been used for the primitive
variables, which implies their collocated arrangement at discrete nodes.31 The velocity and pressure
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are updated via the restarted Generalized Minimal Residual (GMRES) solver proposed in Ref. 34.
The GMRES uses a diagonal preconditioner and a Krylov space of 30 orthonormal vectors. In the
current formulation, Newton-Raphson type iterations are implemented to minimize the linearization
errors per time step. For the sake of completeness, we next present our post-processing techniques
to investigate the flow field features associated with the flip-flop oscillations and to analyze the
complex interactions between gap flow and VIV dynamics.

B. Dynamic mode decomposition

To explore the wake flow structures, a dynamic mode decomposition (DMD) procedure is
used to capture the essential features of a numerically generated unsteady flow field and to explore
various temporal information of the complex dataset as a time sequence of velocity fields.35 A
Singular-Value Decomposition (SVD)-based DMD technique, the so-called Sparsity-promoting
Dynamic Mode Decomposition (SP-DMD), is incorporated, which allows us to flexibly identify
the dominant modes based on the least-square penalty on the different energy level of each DMD
mode.30 The snapshot-based SP-DMD technique provides an appropriate level of trade-off between
the quality of information and the number of modes which is used to approximate the unsteady flow
field for feature extraction. In contrast to the standard Fast Fourier Transform (FFT), the SP-DMD
analysis is useful to identify the behavior of the different time frequencies occurring during the
interaction of the gap flow with the side-by-side wakes. For the sake of completeness, the essential
algorithm of SP-DMD is given as follows:

1. Take time-sequential snapshots of the flow field and sort the dataset into two matrices where
the columns store values of field variables and the rows contain the data sets collected in each
sampling time. Here it is assumed the snapshot data are extracted at constant ∆t. The two
matrices of snapshots are defined as follows:

Φ
n−1
0 B


θ0, θ1 . . . θn−1


, (7)

Φ
n
1 B


θ1, θ2 . . . θn


, (8)

where Φn
1 is defined as the data set (1) of flow field snapshots until time level n and θi is

the snapshot data at time level i. It is postulated that the two time snapshots are in a linear
relationship and written as

Φ
n
1 = AΦn−1

0 . (9)

2. Computing SVD of Φn−1
0 as

Φ
n−1
0 = UΣV ∗, (10)

where U is the m (measurement points) × n (number of time series), Σ is the n × n diagonal
matrix, V is the m × n matrix, and n is the rank of the matrix Φ0.

3. Define the optimal rank-n matrix of A as

Fdmd = U∗Φn
1VΣ−1, (11)

where Fdmd determines the optimal low-dimensional representation of the matrix A.
4. Solve for the eigenvectors and eigenvalues of Fdmd,

Y−1
dmdFdmdYdmd = Edmd(µn), (12)

where µn is the nth eigenvalue of the DMD mode, and the modes are defined as

κ = UYdmd. (13)

5. The growth/decaying rate and rotational frequency are obtained as

Growth/decaying rate = real(log(Edmd)), (14)
rotationary frequency = imag(log(Edmd)). (15)
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6. The optimal amplitude α of each DMD mode, xdmd(α), is obtained by minimizing the least
square deviation between the matrix snapshot Φn−1

0 and the linear combination of the DMD
modes. This is formulated as

minimize J(α) B
α

∥Φn−1
0 − κ diag(xdmd)Vand∥2

F, (16)

where Vand is the Vandermonde matrix of Edmd.
7. At this stage, the standard SVD-based DMD algorithm is elaborated and the linear approxima-

tion of dataset can be written as


θ1, θ2 . . . θn

                                        
Φn−1

0

≈

κ1, κ2 . . . κn

                                        
κ



α1 0 0
0 . . . 0
0 0 αn

                            
diag(xdmd)



1 µ1 . . . µn−1
1

1 µ2 . . . µn−1
2

...
...

. . .
...

1 µn . . . µn−1
n

                                            
EdmdBVand

, (17)

where κ is the DMD mode matrix, dia(xdmd) is the optimal amplitude of each DMD mode, and
Edmd is the eigenvalues of Fdmd which describe the temporal behavior (growth/decay rate and
frequency) of each DMD mode.

8. The above steps elaborate the standard SVD-based DMD. Next SP-DMD is introduced to
select the dominant subset of DMD modes through penalizing the non-zero amplitude DMD
modes by

minimize
α

J(α) + ξcard(α), (18)

where ξ is the manually specified sparsity range and card denotes the cardinality function with
the L1-norm of the vector of amplitudes α B [α1,α2, . . . ,αn]T . αi represents the amplitude of
its corresponding DMD mode i. For this convex optimization problem in the SP-DMD process,
one can flexibly identify the most dominant DMD modes by specifying the sparsity range.
Through the properly weighted amplitudes, a superposition of all DMD modes optimally
approximates the complete data sequence. The main difficulty lies in the identification of a
truncated representation that allows us to capture the dominant and specific components of the
flow field by eliminating features that contribute weakly to the physical data sequence. Finally,
the DMD allows us to focus on smaller regions where dynamically interesting are expected by
the user-specified sparsity structure. With the aid of the Hilbert transformation, the phase angle
of the original signal can be computed from the function Mi(t) which provides the information
of amplitude and local phase.

C. Hilbert-Huang transformation

Fast Fourier Transform (FFT) can analyze a steady and time-invariant signal. It has been
considered as a classical signal analytical technique with its underlying limitations. Flip-flopping
causes a random switching of gap flow, in which the frequency and amplitude of fluid dynamics
variables are changing over time. A standard FFT may not be able to analyze these signals or data
sets in the case of the flip-flop phenomenon. On the other hand, HHT can decompose the unsteady
and time-variant signals and reveal their instantaneous information (e.g., instantaneous amplitude
and frequency) regardless of the time-variant characteristic of the original signal. HHT consists of
two primary analytical techniques. Empirical Mode Decomposition (EMD) decomposes the orig-
inal signal into different modes (intrinsic mode functions, IMFs) through a recursive subtraction
process of IMFs from the original signal, sifting process. This sifting process is controlled by a
standard deviation. These resultant IMFs are time-variant (instantaneous frequency and amplitude
are not constant with respect to time) signals and each IMF characterizes not only a narrow band
with one mode of oscillation but both amplitude and frequency modulations. Following EMD,
these intrinsic mode functions undergo Hilbert Transform (HT) which converts a real signal into its
corresponding analytical signals. These intrinsic mode functions in EMD are prepared for the HT
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analysis to return the accurate information of the signal. The basic steps of HHT are demonstrated
as follows:

1. Identify local extrema and link them to form an envelope which are spline fitted.
2. Find the mean values among each pair of local maximum and minimum. These mean values

are connected to form a signal and subtracted from the original signal. Repeat this step until the
mean-value formed signal satisfies the definition of IMF.

3. Define this signal as I MF1, subtract it from the original signal, and repeat step 2 to find the rest
of the IMFs.

4. Implement the Hilbert transformation on each IMF to explore the temporal information of the
original signal. The corresponding analytical signals of each IMF are shown as

Zi(t) = Ai(t) + jBi(t) = Mi(t)e jΦi(t), (19)

where Mi(t) and Φi(t) are the amplitude and phase angle of each IMF mode, respectively. Here
Ai and Bi(t) are the ith IMF and its corresponding Hilbert transform, respectively, and Bi(t) can
be expressed as

Bi(t) = 1
π

Q
 ∞

−∞

Ai(t)
t − τ

dτ, (20)

where Q is the principal value.
5. As a result, the original signal can be decomposed into the summation of IMFs as

A(t) = Re(Z total) = Re(
n

n=1

Mi(t)exp[ j


ωi(t)dt]), (21)

where j =
√
−1 and ωi(t) = d

dt
[Φi(t)] is the rotational frequency, and Z total is the summation of

all analytical signals of each IMF.
6. Finally the phase angle difference (∆φ) between two signals (s1 and s2) can be achieved

through the following equation:

∆Φ(t) = imag(log(Z total
s1 (t))) − imag(log(Z total

s2 (t))), (22)

After reviewing the numerical formulation and analytical techniques, we next present the
problem setup and validation of our coupled fluid-structure solver.

III. PROBLEM DESCRIPTION AND VALIDATION

The schematic diagram of a flow across two identical circular cylinders in a side-by-side
arrangement is illustrated in Fig. 1. The top cylinder (Cylinder1) is mounted on a spring-damper

FIG. 1. Schematic diagram of side-by-side cylinders and associated boundary condition details. The top cylinder, Cylinder1,
is free to vibrate in the transverse direction.
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system and is free to vibrate transversely, whereas the bottom cylinder (Cylinder2) remains station-
ary. This special setup will be referred to as a vibrating side-by-side arrangement in Secs. IV and V.
The flow direction is parallel to the x-axis from the left toward the right of domain. Here Lu, Ld, and
H represent the upstream distance, the downstream distance, and the height of domain, respectively.
The upper and lower boundaries of the domain are defined as the slip-wall boundary condition. A
uniform free-stream velocity, U∞ = 1.0, is specified on the inlet plane. At the outlet boundary, a
traction-free Neumann boundary condition is prescribed.

Apart from the gap ratio g∗ = g/D, the flow-induced vibration of the side-by-side is character-
ized by the following parameters:

m∗ =
4M

ρf πD2 = 10, (23)

Ur =
U∞
fnD

∈ [2,10], (24)

ζ =
C

4πM fn
= 0.01, (25)

Re =
U∞D
ν
∈ [100,200], (26)

where m∗, ρf , M , D, fn, ζ , C, Re, and ν are the mass ratio, the density of fluid, the mass per unit
length of cylinder, the diameter of cylinder, the structural natural frequency, the damping ratio, the
damping coefficient, the Reynolds number, and the kinematic viscosity, respectively. We consider
a representative value of m∗ζ = 0.1, which is typically found in VIV experiments. For physical
investigation, the results are post-processed in terms of the following quantities:

St =
f vsD
U∞

, (27)

Cd =
Fx

1
2 ρ

fU2
∞D

, (28)

Cl =
Fy

1
2 ρ

fU2
∞D

, (29)

fdmd =
fwD
U

, (30)

Amax
y =

√
2Arms

y , (31)

x∗cr =
xcr

D
, (32)

f ∗Ay
=

f Ay

fn
, (33)

where St, f vs, Fx, Fy, Cd, Cl, fw, fdmd, Amax
y , Arms

y , xcr , x∗cr , f ∗Ay
, and f Ay are the Strouhal number,

the vortex shedding frequency, the x-component traction force on the cylinder, the y-component
traction force on the cylinder, the drag and lift coefficients, the vortex-wake frequency, the normal-
ized vortex modal frequency, the maximum transverse vibration amplitude, the root-mean-squared
transverse vibration amplitude, the normalized critical vortex merging distance, the critical distance,
the frequency ratio, and the frequency of transverse vibration, respectively. The size of the compu-
tational domain is 100D (50D upstream; 50D downstream) × 100D (cross flow direction), which
is sufficiently large to reduce the effects of the artificial boundary conditions defined around the
fluid domain. A representative computational mesh for the side-by-side cylinders is shown in Fig. 2.
The mesh density is finer in the near-wake region from −2.0D to 20.0D in the streamwise direc-
tion and 6.0D to −6.0D in the transverse direction. There is non-deformable structural boundary
layer mesh around each cylinder, and the number of nodes on each cylinder is 136 to accurately
approximate the dynamics of the unsteady boundary layer. The blockage ratio is fixed at 2% and
approximately 50% of the total number of elements is focused around the cylinders and their
near-wake regions. Two pairs of diagonal lines are drawn in the domain around cylinders. These
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FIG. 2. Representative unstructured mesh distribution for the side-by-side arrangement at gap ratio g ∗ = 0.5: (a) discretiza-
tion of full domain, (b) the close-up view of mesh around the side-by-side cylinder system.

lines are used to control the exact number of nodes around the essential position in the domain
to further refine the particular near-wake region. A mesh convergence study is shown in Table I.
The mesh MSH2 is adopted in the present study, as it confirms the adequacy of the numerical
results. The average element length in MSH2 around the cylinders is about 0.06D and it grows
below ratio 1.1 in the near-wake region. All numerical results obtained from the time convergence
study (Table II) show a very small deviation among each other. The time step ∆t = 0.02 is adopted
in the present study. The percentage of differences in the quantities is listed in the parentheses of
tables.

In order to assess the adopted numerical scheme, the results are compared against the available
data in the literature. To begin with, the verification of a freely vibrating isolated single cylinder
is shown in Fig. 3 with the numerical results37–39 for both fixed and varying Reynolds numbers.
Next, the comparison is performed for the stationary circular cylinders in a side-by-side arrange-
ment at Re = 100, g∗ = 1.5. By seeing from Table III, the hydrodynamic coefficients and Strouhal
number have a good agreement with the reported results of Kang7 and Carini.36 Besides the afore-
mentioned verifications, a detailed validation of the solver and convergence studies is reported in
Refs. 5 and 40 for the freely vibrating isolated cylinder and tandem cylinders. These representa-
tive verifications and convergence studies establish the accuracy and validity of the computational
method considered in the present investigation for the vibrating side-by-side circular cylinder
arrangement.

TABLE I. Mesh convergence study. Ncyl: number of points around each
cylinder; Ne: total number of elements in the domain; Re = 100, g ∗= 1.5,
stationary cylinders in the side-by-side arrangement.

Mesh MSH1 MSH2 MSH3

∆t 0.02 0.02 0.02
Ncyl 68 136 180
Ne 24 854 50 588 101 956
Cmean

d
1.434 (0.4%) 1.429 (0.8%) 1.440

Cmean
l

0.180 (3.4%) 0.175 (0.6%) 0.174
Crms

l
0.267 (2.6%) 0.260 (0.0%) 0.260

St 0.162 (0.0%) 0.162 (0.0%) 0.162
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TABLE II. Time convergence study.

Time Step Cmean
d

Cmean
l

Crms
l

St

∆t = 0.08 1.430 (0.1%) 0.172 (2.3%) 0.2639 (1.1%) 0.165 (1.8%)
∆t = 0.04 1.429 (0.0%) 0.176 (0.0%) 0.261 (0.0%) 0.162 (0.0%)
∆t = 0.02 1.429 (0.0%) 0.175 (0.6%) 0.260 (0.4%) 0.162 (0.0%)
∆t = 0.01 1.429 0.176 0.261 0.162

IV. RESULTS AND DISCUSSION

A. Stationary side-by-side arrangement

Before discussing the coupled interaction between VIV and the gap flow, it is essential to
analyze the gap flow interference alone in a stationary side-by-side arrangement. The formation of

FIG. 3. Verification of VIV of the freely vibrating isolated circular cylinder for: (a) fixed Reynolds number Re = 150,
m∗= 2.55, and ζ = 0; (b) varying Re ∈ 60−150, m∗= 10, ζ = 0, and Ur ∈ 3.6 − 9, where B refers to the blockage ratio.
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TABLE III. Assessment of hydrodynamic properties for side-by-side cylin-
ders: the mean value of the drag coefficient (Cmean

d
), the maximum fluctua-

tion of the lift coefficient (Cmax
l

), and the Strouhal number (St).

Cmean
d

Cmax
l

St

Kang7 1.434 (0.3%) 0.271 (0.4%) 0.164 (1.2%)
Carini36 1.409 (1.42%) 0.262 (3.8%) 0.163 (0.6%)
Present 1.429 0.272 0.162

the gap flow is discussed at first. Following that, the origins of the deflected gap flow regime and
flip-flop phenomenon are reviewed and elaborated with numerical results. Finally, the modes of the
vortex formation which are responsible to the deflected gap flow regime and other phenomena are
dynamically extracted. Their mechanisms and characteristics are elaborated through the frequency
analysis and vortex formation in the side-by-side wakes.

The gap flow comprises two shed counter-rotating shear layers from the inner sides of the
cylinders and is a function of gap ratio g∗. In a typical cross flow problem of stationary side-by-side
arrangements, a range of flow regimes appear at different g∗. In a laminar flow (Re . 198), the
flow regime around these two cylinders behaves like a single bluff body with a base-bleeding for
g∗ . 0.3. The gap between the cylinders is so narrow that the vortex shedding on the inner sides of
the cylinders is significantly suppressed. A single von Kármán vortex street is formed downstream
of both cylinders. On the other hand, g∗ & 0.3 is wide enough to allow the shear layers shedding
from the inner side of cylinders. They attach to each other and form a gap flow. However, after
g∗ & 1.25, the influence of the gap flow tends to reduce. As sketched in Fig. 4(a), since the vortices
in both shear layers rotate in the opposite direction, both velocities on the interface of these two
shear layers points in the positive x-axis direction. As a result, the jet fluid between these two
shear layers is accelerated, and the local pressure is significantly lower than the reference pressure.
As shown in Fig. 4(b), these two shear layers attach to each other and manifest itself as a gap
flow which possesses its own characteristic dynamic in the near-wake region. Beyond g∗ ≈ 2.7, the
interaction between the shear layers of the inner side of cylinders is further weakened. There is only
a weak coupling between the wakes. Most of the time, the vortex shedding is in anti-phase with
occasional in-phase vortex wake patterns. More details on the wake development and flow regime
will be discussed in Sec. IV D.

The deflected gap flow regime imposes a significant interference to the hydrodynamic coeffi-
cients. Fig. 5 shows the mutual responses of Cl from both cylinders, and there are net lift forces
repelling each other in the opposite directions. Analogous to the near-wall cylinder arrangements,28

it attributes to the displacement of two stagnation points on the cylinder. Additionally a beating
phenomenon is observed in Cl from Figs. 5(a) and 5(b). In the present analysis, observing from
Fig. 5, this beating phenomenon is only observed in the flip-flop regime, g∗ ∈ 0.3 − 1.25 of a sta-
tionary side-by-side arrangement. Therefore, it is evident that it should be associated with the gap
flow instabilities. It is known that the cylinder with a narrower near-wake region has higher f vs and
its counterpart has a relatively lower f vs. They mutually represent a forcing source to each other
in their proximity exerting a local disturbance to the vortex-shedding processes on both cylinders.
While the two vortex-wakes with extremely similar frequencies simultaneously occur in a close
vicinity, a beating phenomenon can be observed in our study. However, owing to the gap flow
dynamics and instabilities (e.g., flip-flop), f vs on each cylinder varies instantaneously as the gap
flow. As a result of this strong nonlinear coupling of downstream wakes, its beating behavior cannot
be explained simply as a linear superimposition. As g∗ increases, the values of Cl on both cylinders
approach to the values corresponding to the isolated stationary cylinder.

The analytical description of the flow regime becomes subtle when a jet fluid is ejected into the
near-wake of two cylinders. In the flip-flop regime, the gap flow does not follow its original straight
path in the streamwise direction. Instead, it deflects to either side of a side-by-side arrangement.
The corresponding cylinder with the deflected gap flow has a narrower near-wake region than its
counterpart. Furthermore, this deflected gap flow switches between two stable states at a relatively
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FIG. 4. Gap flow between two side-by-side circular cylinders: (a) illustration of the gap flow and low pressure region,
(b) pressure contour of the gap flow region in a side-by-side arrangement at Re = 100 and g ∗ = 0.8.

low frequency which is few orders of magnitude lower than the vortex shedding frequency. This
is generally referred to as a flip-flop of the gap flow. There are some debates regarding the origins
and mechanisms of the deflected gap flow regime and the flip-flop. Ishigai et al.23 proposed that the
deflected gap flow is caused by the Coanda effect. It implies that the gap flow should attach to its
adjacent solid bodies and follow their curvatures. However, the flip-flop was also observed on a pair
of side-by-side flat plates.1,24 Besides flat plates, a biased gap flow was also observed in a cross flow
problem of an isolated circular cylinder which has a slot across its diameter section.41 This implies
that the deflected gap flow regime is insensitive to the overall geometry of its adjacent bluff bodies,
and the Coanda effect is not the root cause of the deflected gap flow regime and flip-flop.

Alam et al.42 also conjectured that the completely symmetric structure in a side-by-side
arrangement is a critical condition in which it rises ambiguity to the gap flow choosing its preferred
direction. This implies that providing an artificial slight asymmetry in the structure, the gap flow
should prefer to a particular direction against the other. However, it is intuitively arguable that the
vortex pair and gap flow in the wake should be completely symmetric (anti-phase) in a perfectly
symmetric side-by-side arrangement. How come the flow regime is asymmetric and unstable?
Furthermore, of the present investigation of vibrating side-by-side arrangements in Sec. IV B, the
flip-flop is also observed in pre- and post-lock-in. Hence, the deflected gap flow regime and flip-flop
are not explicitly dependent on the perfect symmetric topography. Bearing with these puzzling
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FIG. 5. Time history of the Cl variation of stationary cylinders in a side-by-side arrangement for the gap flow mode: g ∗=
(a) 0.5, (b) 0.8; and the coupled vortex mode: g ∗= (c) 1.5, (d) 3.0.

questions, some authors have attempted to think this ambiguity in a different manner. It is well
known that a Hopf bifurcation triggers a von Kármán vortex street, an in-phase vortex synchro-
nization, behind an isolated circular cylinder exceeding a critical Reynolds number (Re ≈ 48).
Analogously, it was reported43 that a deflected gap flow regime is also associated with a type of
bifurcation, namely the pitchfork bifurcation, in the near-wake region of a stationary side-by-side
cylinders. Similar to an isolated cylinder case, a Hopf bifurcation causes an in-phase vortex
synchronization farther downstream at Re & 60. Based on the analysis of these two bifurcations,
Mizushima and Ino43 stated that the deflected gap flow and the in-phase vortex synchronization
are sensitive to the Reynolds number and the region of the in-phase vortex synchronization will
approach to the near-wake region gradually as Re increases further.

All the aforementioned findings show that the deflected gap flow regime in side-by-side cylin-
ders is an intrinsic characteristic of fluid flow. The fluid will inherently deflect toward one side
when Re exceeds a particular critical value in a side-by-side arrangement at a specific g∗. This
result was also shown by modeling the dynamics of the deflected gap flow regime through a system
of two coupled Landau oscillators.44 It was illustrated that the (stable) deflected gap flow regime
and the flip-flop were formed for different reasons. However, the root causes of the flip-flop and
its relationship to the deflected gap flow regime were still not revealed at that moment. Inspired
by the predecessors’ work, Carini et al.36 reported that the flip-flop of the gap flow was a result of
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the coupling between the in-phase vortex synchronization (Hopf bifurcation) and the deflected gap
flow regime (pitchfork bifurcation). It was deemed as a secondary instability in the near-wake flow
field. Subjected to the additional fluctuation associated with the in-phase vortex synchronization,
the flow overcomes the barrier between these two stable modes and switch-over occasionally as
the secondary instability associated with new spontaneous symmetry breaking. The development of
flip-flop as a secondary instability is clearly illustrated in Fig. 6, as the in-phase synchronization

FIG. 6. Streamline plots of stationary cylinders in a side-by-side arrangement at g ∗= 0.5 and Re ∈ 60 − 92. (a) Re = 60,
(b) Re = 70, (c) Re = 90, (d) Re = 92.
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region approaching the near-wake region where it couples with the pitchfork bifurcation associated
with the primary deflected gap flow. Based on the present numerical results for side-by-side circular
cylinders, the deflected gap flow regime occurs at Re ≈ 70 and the flip-flop occurs at Re ≈ 92 at
g∗ = 0.5.

To analyze the flip-flop phenomenon in detail, it is essential to exactly observe its evolution
and underlying mechanism. The flip-flop was usually reported by many authors as an intermittent
switch-over of the gap flow (i.e., sudden phase variation from 0◦ to 180◦) due to the complex non-
linear coupling of the two bifurcation modes. However, when exactly this happens was not previ-
ously recorded in a time history manner. Here the HHT analysis is able to extract the instantaneous
temporal behavior of the hydrodynamic variables, as shown in Fig. 7, to observe the flip-flop fre-
quency exactly. For the ease of observation, the phase angle difference (∆φ) is defined in the first
and second quadrants. Consistent with the previous reportings, it is observed that the switch-over
moment of the gap flow is associated with an instantaneous in-phase vortex shedding synchroniza-
tion. Based on that, the flip-flop instants are observed in Fig. 7(d) as instantaneous zero phase angle
difference (∆φ = 0◦), in-phase. However,∆φ = 0 condition of drag force Cd does not convey the same
information of the flip-flop. The lift is directly associated with the vortex shedding process, but the
drag is related to the pressure and shear stress in the streamwise direction. This is observed before
the vortex shedding occurs at Re ≈ 48, in which the drag can be observed instead of the lift. In a

FIG. 7. Time history of the instantaneous phase angle difference between ((a),(c)) Cd, ((b),(d)) Cl of stationary cylinders in
a side-by-side arrangement at Re = 100 and g ∗= 0.8. Here φ represents the phase angle.
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classical cross-flow problem on a stationary circular cylinder in a laminar flow, the frequency of
Cd is twice of its corresponding Cl. However, in a stationary side-by-side arrangement, due to the
presence of the proximity interference by its counterpart, the wake interference of the gap flow (e.g.,
deflected gap flow regime) and the gap flow instability (e.g., flip-flop), the Cl behavior cannot be
easily and directly interpreted from the evolution of its Cd. Therefore, the temporal behavior of Cl

is chosen to interpret the flip-flop phenomenon of the gap flow, instead of Cd. It can be seen that
the occurrence frequency of ∆φ = 0◦ is not a constant. Therefore, it confirms the observations in the
previous experimental and numerical investigations. In fact, it is a turbulence-like characteristic that
poses challenges from a physics viewpoint even at low Reynolds number. It is natural to ponder such
questions, for example, what influences the flip-flop frequency? What is the correlation between the
flip-flop phenomenon and the corresponding gap flow? Through the present numerical observations,
it is realized that the flip-flop dynamics is significantly influenced by the gap flow strength. Although
these details will be discussed in Sec. IV D, one should realize that since its randomness associated
with a strongly coupled non-linear nature, the classic analytic approaches are not sufficient to extract
its characteristics. Therefore, the SP-DMD analysis is adopted in Secs. IV A and IV B to deal with
its time-dependent multi-frequency and multi-amplitude characters.

Next, the DMD analysis is performed in stationary side-by-side arrangements at g∗ = 0.5 be-
tween 60 < Re < 100 to trace the evolution of various DMD modes of the vortex wakes and the
identification of relevant flow structures. The frequency spectra are sketched in Figs. 8(a) and 8(b)
with the red crosses which represent the relatively influential DMD vortex modes whose dominant
eigenfunctions generate a set of dynamically relevant modal structures. They are selected based
on the penalization of non-zero values of α with a pre-set sparsity level. The SP-DMD technique
allows us to extract a concentration of low-frequency modes, thereby eliminating information with
substantially larger amplitudes identified by the standard DMD procedure. To interpret the signif-
icance of each relevant frequency, their corresponding DMD modes are plotted in Fig. 8 from (c)
to (j). The extraction of influential DMD modes is based on the value of modal amplitude α, the
distinct vortex pattern, and significance to the research objective. For a cluster of DMD modes at
similar fdmd, they normally share a resembling vortex pattern representing analogous significance
to a particular phenomenon. Therefore a representative DMD mode is extracted among them to
illustrate a particular problem. Although a particular cluster of DMD modes possesses a high α
value, the significance it conveys might be out of the relevancy of the flow structure. As a result,
one can see that the DMD mode in Fig. 8(c) has zero frequency and represent the mean flow
across the stationary side-by-side cylinders. Figs. 8(d) and 8(g) depict a similar vortex pattern
originated from the entry of the gap flow at Re = 70 and Re = 95, respectively. Interestingly, it is
not observed at Re = 50 of the same arrangement before the occurrence of the pitchfork bifurcation.
Since the deflected gap flow regime is Reynolds-number dependent, it implies that this particular
DMD mode should manifest the characteristic of the pitchfork bifurcation, the breakdown of the
gap flow symmetry, and triggering of the deflected gap flow regime. The DMD modes in Figs. 8(e)
and 8(f) represent the DMD modes of farther-downstream Hopf bifurcation which influence Cl

and Cd, respectively. This is assessed based on the characteristic vortex wake pattern in each
mode. For example, the DMD mode in Fig. 8(e) possesses a counter-signed vortex wake pair in
the streamwise direction. Knowing that this vortex pattern is constant in the DMD mode and the
wake strength varies with its corresponding frequency fdmd, it could generate a periodically varying
pressure difference in the transverse direction and results in a fluctuation of lift force. Similarly
Fig. 8(f) shows a counter-signed vortex wake pattern in the transverse direction, analogous to a
counter-rotating side-by-side cylinder arrangement. As the periodical variation of its vortex wake
strength, it renders a pressure force fluctuation in the streamwise direction and accounts for the
streamwise drag/thrust. Based on analogous reasoning, the modes in Figs. 8(i) and 8(j) at Re = 95
affect its corresponding Cl and Cd as well. Logically, after explaining the DMD modes which
influence Cd, Cl, and pitchfork bifurcation, it is believed that the mode in Fig. 8(h) is related to the
flip-flop phenomenon. This deduction is based on the following four observations. At first, it only
presents a vortex pattern in the near-wake region, 0.1D . X/D . 5D, similar to Fig. 8(g). Second,
similar to Fig. 8(g), the vortex mode in Fig. 8(h) mainly manifests in 1.5D . Y/D . −1.5D. Its
origin of vortex is stretching from the origin point (0.0D,0.0D), which means that it is related
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FIG. 8. Dynamic modal analysis for stationary cylinders in a side-by-side arrangement at g ∗ = 0.5: dependence of DMD
amplitudes on frequency for (a) Re = 70, (b) Re = 95, the four representative DMD modes for different frequencies (c)-(f)
Re = 70; (g)-(j) Re = 95. Here circles denote the standard DMD data and crosses represent its sparsity-promoting variant.

to the gap flow behavior. On the other hand, different from Fig. 8(g), it seems disconnected and
shows no footprint from the origin point (0.0D,0.0D), but a secondary instability associated with
the symmetry breaking developed from the vortex interactions in the near-wake region. Third, its
fdmd is an ideal match with the characteristic fflip ≈ 0.035 of this case. Furthermore, it does not
only exist in this particular case, but the rest of the cases of a stationary side-by-side arrangement
in the flip-flop regime. Fourth, the vortex mode in Fig. 8(h) at fdmd ≈ 0.035 only appears and
becomes strong in the near-wake region during the flip-flop regime, where the pitchfork and Hopf
bifurcations superimpose. Therefore, it is believed that it indeed represents a primary characteristic
mode of the flip-flop. Our conjecture is again confirmed through the DMD analysis in the same
arrangement at Re = 100. The results in Fig. 9(a) extract the dominant DMD modal frequencies
and its corresponding DMD modes, which are plotted in Fig. 9 from (c) to (f). The frequencies of
DMD modes mainly center about the four clusters at 0.02, 0.035, 0.085, and 0.17 approximately,
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FIG. 9. Dynamic modal analysis for stationary cylinders in a side-by-side arrangement at Re = 100 and g ∗ = 0.5: dependence
of DMD amplitudes on (a) frequency, (b) eigenvalue spectrum, and flip-flop spatial instability is observed via DMD modes
for different frequencies and amplitudes in (c)-(f). The dashed curve identifies the unit circle. The results are obtained using
the standard DMD algorithm (circles) and the sparsity-promoting DMD (crosses). (a) fdmd= f D/U vs. α, (b) Re(µn) vs.
Im(µn), (c) fdmd= 0.018 and α = 7.6, (d) fdmd= 0.034 and α = 2.5, (e) fdmd= 0.087 and α = 4.2, (f) fdmd= 0.162 and
α = 6.1.

which are marked with blue circles. Based on the aforementioned observations, the modes in Fig. 9
from (c) to (f) should represent DMD modes of the deflected gap flow regime, the flip-flop, Cl, and
Cd, respectively. In Fig. 9(b), it also shows that all the DMD modes are stable in the time domain,
whereby the unstable mode should be outside the unit circle.
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FIG. 10. Vorticity contour plots of a transversely vibrating cylinder in a side-by-side arrangement at Re = 100, m∗= 10,
ζ = 0.01, and g ∗= 0.6: Ur = (a) 2, (b) 4, (c) 6, (d) 8. The flow is from left to right.

B. Vibrating side-by-side arrangement

If one of the side-by-side cylinders is free to vibrate, the entire flow regime is completely
different during the lock-in. To the best of our knowledge, this interaction of gap flow and VIV
is not reported in the literature for this arrangement. In this section, the primary focus is on the
demonstration of the observations in a vibrating side-by-side arrangement. Similar to the stationary
side-by-side cylinder arrangement, g∗ refers to the beginning distance between the two cylinders.
In terms of the detailed mechanism of VIV and the gap flow interaction, it will be furnished in
Secs. IV C and IV D.

As discussed in Sec. IV A, the flow regime of a stationary side-by-side cylinder is already very
complex. In a vibrating side-by-side arrangement, it is observed that the biased gap flow deflects
toward the side of a vibrating cylinder quasi-stably during lock-in. The sampling vortex contour
plots at different Ur values are shown in Fig. 10. In a frequency lock-in, f vs is synchronized with fn
and the transverse vibration motion becomes the active forcing source to control f vs. Therefore, Ay

should be chosen as an indicator of the vortex-shedding process, instead of Cl. However, one of the
cylinders is stationary in the present vibrating side-by-side arrangement. Therefore, Cl is still valid
to be used to investigate the flip-flop behavior for the vibrating side-by-side arrangements during the
lock-in and they are plotted in Fig. 11. Observing from Fig. 11, the phase difference ∆φ between
drag Cd and lift Cl of the two cylinders is approximately 0◦ and 90◦, respectively. Therefore, the
flip-flopping behavior (∆φ = 0 of Cl) never manifests. Similar to the DMD analysis in a stationary
side-by-side cylinder, the modal analysis is performed for the vibrating side-by-side cylinders to
reveal the discrepancy between the corresponding stationary and vibrating side-by-side arrange-
ments. It is found that the characteristic DMD mode of the pitchfork bifurcation is not extracted
during lock-in, as shown in Fig. 12. On the other hand, the DMD modes at fdmd = 0.12 and 0.23
only manifest significantly from X/D & 15 and responsible for the in-phase synchronization farther
downstream, and Figs. 12(b) and 12(d) account for the VIV of the vibrating cylinder. Nonetheless,
it is still discernible in the non-lock-in region as shown in Fig. 13. To our understanding, there is a
potential characteristic of VIV during lock-in which may account for this change and the frequency
synchronization. During the frequency lock-in, f vs of the vibrating cylinder is synchronized with fn
such that Strouhal relation does not fulfill. Moreover, during lock-in the locked vibration is deemed
as a forced periodic disturbance which synchronizes the vortex shedding process of the stationary
cylinder. As a result, the large single vortex street, as shown in Figs. 12(a) and 12(c), is formed
farther downstream because of the in-phase vortex synchronization. Although the frequencies are
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FIG. 11. Time history of the instantaneous phase angle difference between ((a),(c)) the drag force Cd and ((b),(d)) lift force
Cl of the transversely vibrating cylinder in a side-by-side arrangement at Re = 100, g ∗= 0.6, and Ur = 5.

synchronized, as previously shown in Fig. 11(d), the lift force Cl from cylinders are 90◦ out of
phase. It means that there is no net energy transfer among cylinders and the transverse vibration
is fully developed. On the contrary, the drag Cd is generally in-phase (∆φ ≈ 0◦). If the cylinder is
allowed to vibrate in the x-direction, the in-phase fluctuation of Cd may intensify the streamwise
vibration significantly.

C. The gap flow and VIV interaction

During the frequency lock-in, the response of hydrodynamic forces with respect to Ur is
significantly affected. For instance, as depicted in Sec. IV A, a beating effect is observed in sta-
tionary side-by-side arrangements at g∗ . 0.8. A similar beating effect can also be observed in
the vibrating side-by-side arrangement during pre- and post-lock-in. Although the gap flow de-
flects during lock-in, f vs on both cylinders is still synchronized. Therefore, no beating effect is
observed in the frequency lock-in of vibrating side-by-side cylinders. Besides the beating effect,
in Fig. 14(a) as Ur falls outside lock-in, the vibration of the cylinder is not much significant and
Cmean
d

on two cylinders is almost identical. This is also the case for the corresponding stationary
side-by-side arrangement. On the contrary, the vibrating cylinder always has a relatively high Cmean

d

during lock-in. This could be induced by the deflected gap flow regime which was documented in
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FIG. 12. Dynamic modal analysis for flow in the coupled wake of cylinders in a side-by-side arrangement at Re = 100,
m∗= 10, ζ = 0.01, g ∗= 0.5, and Ur = 5, where Cylinder1 vibrates in the transverse direction. (a) fdmd= 0.12 and α = 0.8,
(b) fdmd= 0.19 and α = 17.8, (c) fdmd= 0.23 and α = 2.8, (d) fdmd= 0.38 and α = 7.1.

literatures.1,7 In the pre- and post-lock-in regimes, owing to the benign vibration compared with
the response during lock-in, the overall hydrodynamic responses are resembling the stationary
side-by-side arrangement. Therefore, as shown in Fig. 14(b), Crms

l
from both cylinders is almost

identical. Furthermore, there is also a tendency of Crms
l

build-up as g∗ decreases. This variation in
lift Cl is probably caused by the stagnation point displacement on each cylinder, as a result of the
downstream wake interaction.5 In pre- and post-lock-in regions, as g∗ diminishing the displacement
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FIG. 13. Dynamic modal analysis for flow in the wake of cylinders in a side-by-side arrangement at Re = 100, m∗= 10,
ζ = 0.01, g ∗= 0.6 andUr = 2, where Cylinder1 vibrates in transverse direction. (a) fdmd= 0.012 and α = 12.2 (b) fdmd= 0.03
and α = 10.4 (c) fdmd= 0.064 and α = 4.7 (d) fdmd= 0.14 and α = 9.2.

of stagnation points move further into the gap between the side-by-side arrangement. Consequently,
Crms
l

on each cylinder is higher and results in a distinction of Crms
l

among different g∗. On the other
hand, Crms

l
on the vibrating cylinder is further amplified during lock-in. This is probably induced

by the relative motion between the wake flow and cylinder, besides the further displacement of the
stagnation point caused by the vibration. The transverse force Crms

l
on the stationary cylinder is also

increased because of the synchronization from its vibrating counterpart. This proximity interference
exerted by its vibrating counterpart during its lock-in is gradually weakening, while g∗ exceeding
beyond the flip-flop regime, as shown in Fig. 14(b). The gap flow interference to the VIV dynamics
can be conspicuously observed through the investigation of Amax

y of the vibrating cylinder. As
shown in Fig. 14(c), the lock-in region becomes narrower (approximately 43%) and occurs earlier
(approximately 11%) than the isolated oscillating cylinder under an identical flow environment.
Amax
y at different g∗ has a mean value which is close to that of the corresponding isolated oscillating

cylinder setup. Particularly, at g∗ = 2.5 where two cylinders are relatively far away from each other,
the lock-in region is inclined to restore the characteristic trajectory of the corresponding isolated
cylinder case. However, its value exhibits a significant fluctuation (approximately 9%) about its
mean value at different gap ratios g∗.

All these discrepancies are associated with the mutual interaction between the gap flow and
VIV dynamics. As the gap flow bends toward the vibrating cylinder, the near-wake region of the
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FIG. 14. Dependence of (a) mean dragCmean
d

, (b) fluctuating transverse forceCrms
l

, and (c) Amax
y onUr of a side-by-side

arrangement at Re = 100, m∗= 10, and ζ = 0.01, where Cylinder1 vibrates in the transverse direction.

vibrating cylinder becomes narrower and enhances the interaction of the shed shear layers. There-
fore f vs, shown in Fig. 15(a), becomes larger than an isolated oscillating cylinder under the identical
Re and Ur . Consequently, the cylinder in the current arrangement experiences an enhanced f vs
and synchronizes earlier with fn of the cylinder. Similarly, the mismatch of frequency, the end of
the lock-in region, is expected to happen earlier as well. However, albeit the gap flow deflects to
the vibrating cylinder during lock-in, as shown in Fig. 15(b), f vs on each cylinder is synchronized
to fn precisely. To elaborate this modulation of the lock-in region in detail, the dependency of
the vibration frequency ratio ( f ∗Ay

= f Ay/ fn) on Ur , where f Ay refers to the transverse vibrating
frequency, is plotted in Fig. 15(c). It should be taken note that f Ay is intermittently changing over
time in the deflected gap flow regime. Therefore, f ∗Ay

is measured in a time-averaged manner except
the frequency-discontinuity at the instants of flip-flop. By comparing Figs. 14(c) and 15(c), the
onset of VIV indeed occurs earlier (Ur ≈ 4.5) than the isolated vibrating cylinder at Re = 100.
Obviously the lock-in region for g∗ = 2.0 is drastically reduced by about 43% compared with an
isolated cylinder at Re = 100. Its onset does not occur early. This is probably due to a relatively
large g∗ at its initial stage. However by the end of the lock-in region, as the extensive transverse
vibration, the proximity interference exerted by its stationary counterpart becomes relatively strong
(but not enough to suppress the supply of the vortex wake, similar to the g∗ . 0.3 cases in the
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FIG. 15. Spectral analysis at Re = 100, m∗= 10, and ζ = 0.01: (a) comparison of Cl frequency at Ur = 5 for the isolated
vibrating cylinder and the vibrating cylinder in a side-by-side arrangement at g ∗= 0.5; (b) comparison of Cl frequency
for cylinders in a side-by-side arrangement at g ∗= 0.5 and Ur = 5, where Cylinder1 vibrates in the transverse direction;
(c) dependence of the normalized response frequency f ∗Ay

= fAy/ fn on the reduced velocity Ur of cylinder in a side-by-side
arrangement for varying g ∗ ∈ 0.5−2.0, where Cylinder1 vibrates in the transverse direction.

laminar flow) and induces the frequency mismatch (during the end of the lock-in region) into occur-
ring early. On the other hand, because of a small initial gap-ratio (in this case, 0.5 . g∗ . 1.25),
f vs modulation happens earlier and causes an early onset of the lock-in region for those cases, as
shown in Fig. 15(c). However, the lock-in region is not narrowed in these cases. In this flip-flop
regime of the vibrating side-by-side cylinder arrangement at Re = 100, the lock-in region ranges
from 4.5 . Ur . 7.5. With regard to an isolated vibrating cylinder at Re = 100, the lock-in region
starts from Ur ≈ 5.0 until Ur ≈ 8.0 instead. Although f vs is locked with fn for 0.5 . g∗ . 1.0 from
4.5 . Ur . 7.5, Amax

y dreadfully diminishes after Ur & 6 for all vibrating side-by-side cylinder
arrangements in the flip-flop regime. This is probably a result of the extremely narrow g∗ when the
vibration reaches its minimum position and the vortex-wake supply is suppressed by this tinny gap
between cylinders. For example, Amax

y is about 0.42 in the present case at g∗ = 0.6. The marginal
distance is only 0.18, while it is 1.52 for g∗ = 2.0 in the present investigation. Analogously, the
vortex shedding on the inner side of a near-wall isolated oscillating cylinder is also significantly
suppressed at e∗ . 0.25 and Re ≈ 100 in present of a strong proximity interference, where e∗ = e/D
is the characteristic gap ratio between the flat wall and the inner side of the cylinder. Consequently,
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FIG. 16. Instantaneous vorticity contours in the wake of the cylinders in a side-by-side arrangement at Re = 100, g ∗= 0.5,
m∗= 10, ζ = 0.01, Ur = 5, and tU/D = 200, where Cylinder1 vibrates in the transverse direction. The flow is from left to
right.

the supply of the gap flow is cut by the tinny gap during vibration. As a result, Amax
y of the cases

during the flip-flop regime is decreased after Ur & 6. This can be visualized in Fig. 16, which is the
vortex contour plot of a vibrating side-by-side cylinder arrangement of g∗ = 0.5 at the minimum Ay

(tU/D = 200). Furthermore, subject to the strong proximity interference, the relationship between
f ∗Ay

and Ur in these g∗ cases cannot agree with the Strouhal relation very well in the post-lock
region.

The interaction between the gap flow and VIV is mutual and complex. The biased gap flow
causes the shrinkage of the lock-in range and its early occurrence and ending through the enhanced
vortex shedding frequency. On the other hand, VIV inhibits the gap flow to change its course and
retains it to its side permanently. Although a vibrating cylinder is included in the side-by-side
arrangement, the instantaneous g∗ during vibration is still within the range of 0.3 . g∗ . 1.25.
Intuitively it is peculiar why the pitchfork bifurcation is lost? However, it will be shown that
one of the prerequisites of the pitchfork bifurcation does not fulfill in the vibrating side-by-side
arrangement during lock-in. This will be elaborated together with the flow regime development
in detail in Sec. IV D. So far although we have not revealed the root causes for the loss of
the pitchfork bifurcation, it is observable that the gap flow behavior is tremendously different
from that in the stationary side-by-side cylinder arrangement. Therefore, a comparison between
the stationary and vibrating side-by-side arrangements is performed and plotted in Fig. 17(c). It
shows the time-averaged x-component velocity profiles of the gap flow of stationary and vibrating
side-by-side arrangements. It can be seen that the velocity profiles during pre- and post-lock-in
are very similar and symmetric. However, the time-averaged x-component velocity mean value
biases toward the vibrating cylinder during lock-in. This implies that in a time-averaged sense, the
x-component of the velocity value on the upper section of the gap flow is higher than its lower
section and leads the direction of the gap flow towards the vibrating cylinder. This observation is
paramount to understand the deflected gap flow regime and will be discussed in Sec. IV D.

To describe the eddying motion and flow characteristic patterns, the critical-point concept
(CPC) and phase-plane theory are adopted. Based on the definition from Ref. 45, critical points are
points in the flow field where the streamline slope is indeterminate and the velocity is zero relative
to an appropriate observer. In general, the critical points can be classified into 6 categories, namely
nodal source/unstable node, nodal sink/stable node, spiral source/unstable focus, spiral sink/stable
focus, (four-way indeterminant) saddle point, and (stable) center. Moreover their respective eigen-
vectors determine the distortion or stretching of that particular critical point and influence the shape
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FIG. 17. Time-averaged x-component velocity profiles of gap flow in side-by-side arrangements: (a) varying Reynolds
number with fixed gap ratio g ∗= 0.5 for a stationary side-by-side arrangement, (b) different gap ratios at constant Reynolds
number Re = 100 for stationary side-by-side, (c) vibrating side-by-side configuration for varying reduced velocity Ur . The
velocity profiles are extracted in the near-wake region at locations: a vertical linear region from (0.6D, 0.75D) to (0.6D,
−0.75D), where (0.0D,0.0D) is the center between the cylinders. The time-averaging is performed from tU/D = 300 to
500.

and strength of the corresponding critical point in that particular phase planes. In a basic two
dimensional steady flow problem, there are only two types of critical points exist, namely center and
saddle points as labelled in Fig. 18(a). With regard to the significance of our discussion, the critical
question is how the gap flow interacts with these critical points? Based on the no-cross principle
of the streamline, the streamlines will always be tangent to the particular streamline with a higher
magnitude of the eigenvalue. From the flow field viewpoint, this means that streamlines will cling to
and follow the curvature of the streamlines of the locally fast flowing fluid regions.

With these post-processing tools, we attempt to find the coupled interactions between the gap
flow and the vortex wake dynamics. It was well studied by many authors that the existence of the
flip-flop in a perfect symmetric side-by-side arrangement at Reynolds number ranging from 100 to
200. However, it is also reported by Alam and Sakamoto42 that a quasi-stable deflected gap flow
regime can be achieved at this relatively higher Reynolds number range by introducing a slight
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FIG. 18. Instantaneous streamline plots of the side-by-side arrangements at Re = 100: (a)-(d) side-by-side arrangement at
g ∗ ∈ 0.5−1.25; (e)-(h) side-by-side arrangement at m∗= 10, ζ = 0.01,Ur = 5, and g ∗ ∈ 0.5−1.25, where Cylinder1 vibrates
in the transverse direction. (a) g ∗= 0.5, (b) g ∗= 0.6, (c) g ∗= 0.8, (d) g ∗= 1.25, (e) g ∗= 0.5 and Ur = 5, (f) g ∗= 0.6 and
Ur = 5, (g) g ∗= 0.8 and Ur = 5, (h) g ∗= 1.25 and Ur = 5.
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asymmetry into the side-by-side arrangement, e.g., angle of attack variation and different size of
cylinders. In fact, the angle of attack is equivalent to a staggered arrangement with C ylinder1
at further downstream position. It is observed that the gap flow will be biased toward the up-
stream cylinder at 1.2 . t∗ (center-to-center characteristic distance) . 2.25 and 100 . Re . 200.
This similarity to the stationary side-by-side arrangement is reasonable, since the deflected gap
flow regime is insensitive to the bluff bodies topography. Hence, it is believed that the stable de-
flected gap flow regime is independent upon the angle of attack, which is beyond the scope of the
present investigation. Based on the analysis of a staggered circular cylinder,8 the outer side free
shear layer of C ylinder2 is stretched and weakened relative to that of C ylinder1. Analytically,
this stretching from a particular eigenvector of a center (vortex wake) means that the strength of
this wake is relatively weak in this phase-plane. This observation may imply that the deflection
of the gap flow is related to the strength of the pair of vortex wakes from cylinders. On the other
hand, through the observation in the staggered cylinders in which a flip-flop exists, four-way saddle
points can also be observed periodically in the normal path of the gap flow in the near-wake region.
Hence, it is understandable that the gap flow will deflect toward the opposite direction of the saddle
point.

Inspired by these observations, a similar investigation is performed on stationary side-by-side
arrangements, as shown in Fig. 18 from (a) to (d). One can observe that every deflecting corner of
the gap flow is associated with a four-way saddle point of a local strong vortex wake. Therefore,
the velocity magnitude at these four-way saddle point should be a local minimum, as plotted in
Fig. 19. It shows that the saddle points and center locate exactly at the low velocity magnitude
regions. Based on the no-cross principle, the gap flow streamlines deflect along the streamlines
radiating from the saddle point and its direction is led by the relatively fast flowing shear layers.
Similar to a pair of staggered cylinders, these four-way saddle points also intermittently appear
on the straight path of the gap flow in the near-wake region. The streamlines which form the
gap flow adapt themselves along the curvature of the relative strong local vortex wake, since the
velocity on the outer layer of these wakes is relatively higher. If the saddle point is formed by one
particular strong wake on one side (it is the side of the wider near-wake region), the gap flow is de-
flected to the opposite direction. Qualitatively, the near-wake region manifests a deflected gap flow
regime.

Since the anti-phase vortex shedding is dominant, vortex-wake pairs, as shown in Fig. 18(b),
can be observed much frequently in the near-wake region. In the unbalance of the near-wake region,
the strength of the vortex wake pairs is different on both sides. The gap flow will adapt to the
curvature of the stronger local vortex wake, since there is a larger gradient across its outer shear
layers. The strong wakes in the near-wake region is associated with the wider near-wake region.
However, this is not the case during the switch-over of the gap flow. At the instant of the flip-flop,
the in-phase vortex synchronization is dominant. Instead of vortex-wake pairs in the near-wake
region, vortex wake-saddle point pairs appear, as shown in Fig. 18(a). Following the curvature of
the vortex wake and the opposite direction of the saddle point, the gap flow sweeps up and down.
As the re-occurrence of wide and narrow near-wake regions, the gap flow is eventually stabilized to
one side and forms a stable deflected gap flow regime again. In a nutshell, the path of the gap flow is
dependent upon the dynamics of saddle points and the relative strength of the vortex wakes.

The quasi-stable deflected gap flow regime in a vibrating side-by-side cylinder can be under-
stood in a similar approach. It has been mentioned earlier that the gap flow deflects toward the
vibrating cylinder in a quasi-stable manner during lock-in, as shown in Fig. 18 from (e) to (h). As
C ylinder1 vibrates extensively, the vortex wakes formed from the outer side of the C ylinder1 are
stretched/weakened and brought farther away from the straight path of the gap flow. Therefore, the
gap flow is pushed relatively upper toward the vibrating cylinder (C ylinder1) by this relatively
strong local wake from the inner side of C ylinder2. It is well known that the stable deflected gap
flow regime possesses two different frequencies on each cylinder of the side-by-side arrangement.
Nonetheless, the frequencies on both cylinders are synchronized to an identical value in vibrating
side-by-side cylinders during frequency lock-in and a large single vortex street is formed farther
downstream through an in-phase vortex synchronization. As a result of this frequency synchroniza-
tion and the observed anti-phase vortex synchronization in the near-wake region, vortex-wake pairs,
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FIG. 19. Streamline and velocity magnitude contour plots of the side-by-side arrangements at Re = 100 and g ∗= 0.5:
(a)-(d) side-by-side arrangements; (e)-(h) vibrating side-by-side arrangements at m∗= 10, ζ = 0.01, and Ur = 5, where
Cylinder1 vibrates in the transverse direction.

the anti-phase vortex shedding is retained. There is no chance for the flip-flop to develop. These
findings are further validated through the modal analysis of the vibrating side-by-side arrangement.
As discussed in Sec. IV C, the low frequency DMD modes which are associated with the deflected
gap flow regime and flip-flop cannot be extracted as influential DMD modes.
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D. Further discussion on the dependency and origin of the flip-flop

The gap flow is significantly suppressed at g∗ . 0.3 and there is only one large von Kármán
vortex street forming farther downstream of the pair of side-by-side cylinders. Therefore, the entire
arrangement can be considered as a single bluff body with base-bleeding flow. The complexity
in the flow regime raises as the gap ratio increases. The flip-flop and deflected gap flow regime
are introduced as additional interferences to the coupled near-wake region at g∗ ∈ 0.3 − 1.25. As
discussed in Sec. IV A, the flip-flop is a secondary instability from the coupling between pitch-
fork bifurcation and Hopf bifurcation. The development and position of the Hopf bifurcation are
significantly dependent upon the Reynolds number. As a result, the flip-flop occurs beyond a critical
Reynolds number, Re & 92, in a stationary side-by-side cylinder arrangement at g∗ = 0.5. The next
question could be whether the flip-flop is really a chaos without a regular pattern when exceed-
ing critical parameters? If it is not, what do its behaviors depend upon at various side-by-side
arrangements?

To answer these questions, we recollect all the results obtained in the present investigation to
shed light on the flip-flop behavior of the gap flow. Comparing Figs. 17(b) and 20, it is observed
that as g∗ increases in the flip-flop regime, the strength of the x-component velocity, |U |, of the gap
flow and fflip increase spontaneously. Therefore, we believe that fflip has a dependency on the gap

FIG. 20. Time history of the instantaneous phase angle difference of Cl of stationary cylinders in a side-by-side arrangement
at Re = 100 and g ∗ ∈ 0.3−1.25. (a) g ∗= 0.3, (b) g ∗= 0.5, (c) g ∗= 0.8, (d) g ∗= 1.25.
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FIG. 21. Vorticity contour plots of stationary cylinders in a side-by-side arrangement at Re = 100: g ∗ = (a) 0.5, (b) 0.8,
(c) 1.0, (d) 3.0.

flow strength which rises as g∗ increases in the flip-flop regime. In Fig. 21 from (a) to (c), through
qualitative observation, the merging distance of vortex wakes (x∗cr=xcr/D), the length measured
from the point (0.0D,0.0D) until the downstream distance where the in-phase vortex synchroniza-
tion starts forming, possesses a gradually incremental tendency as g∗ increases. On the other hand,
x∗cr is not observable in the measurable distance outside the flip-flop regime at g∗ & 1.25 as shown
in Fig. 21(d). It implies that x∗cr is dynamic and also depends on the gap flow strength. Furthermore,
x∗cr is paramount in flip-flop dynamics since it represents one of the critical parameters for the
formation of the in-phase synchronization in a side-by-side arrangement. Therefore, the focus is to
explore the relationship between the flip-flop, the gap ratio g∗, and the vortex merging distance x∗cr .

It is known that the flip-flop is completely suppressed at g∗ . 0.3 and disappears after g∗ &
1.25. Fig. 20 clearly shows the flip-flopping moments in the stationary side-by-side cylinders at
Re = 100. The flip-flop frequency fflip is indeed much lower at smaller g∗, where the gap flow
strength is feeble and possibly suppressed at g∗ = 0.3. Furthermore, the strength of the gap flow
is also enhanced in the proportion of Reynolds number, as shown in Fig. 17(a). Observing from
its corresponding time history plot of flip-flopping moment through HHT in Fig. 22, the flip-flop
frequency fflip is increased at a higher Re value in the two-dimensional laminar flow. Therefore,
it is believed that fflip is gap flow strength dependent, which is associated with both the Reynolds
number Re and gap ratio g∗.

It is intuitive that each cylinder in a side-by-side arrangement behaves more like an isolated
vibrating cylinder at large gap ratio g∗ & 3 or 4. The single von Kármán vortex street disappears.
Instead, two vortex streets form behind each cylinder and the flip-flop fades away. However, the
kinematics of the flip-flop requires more detailed investigation of the gap ratio g∗, the vortex merg-
ing distance x∗cr , and the phase difference φ. As mentioned earlier in this section, it is qualitatively
observed in Fig. 21 that x∗cr gradually increases as the increment of g∗. This is confirmed quantita-
tively through the exact measurement of x∗cr in a time-averaged manner at different g∗ in Fig. 23(a).
In fact, x∗cr dynamically changes in different circumstances. As shown in Fig. 23(a), x∗cr of the
in-phase vortex shedding refers to the critical distance during flip-flop. Meanwhile, its counterpart
for a perfect anti-phase vortex shedding pair also grows proportionally with g∗ and manifest at
farther downstream. Different from x∗cr for the location of the Hopf bifurcation, it refers to the
earliest vortex merging distance in a perfect anti-phase vortex wake pair. It implies that the position
of the Hopf bifurcation should be even farther away from this nondimensional distance during
the anti-phase vortex shedding. It is already elaborated that the flip-flop is a result of coupling
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FIG. 22. Time history of the instantaneous phase angle difference of Cl of stationary cylinders in a side-by-side arrangement
at g ∗= 0.5: Re = (a) 92, (b) 200.

between the pitchfork and Hopf bifurcations. A larger distance between them during anti-phase
vortex shedding indicates that the possibility of flip-flop is low. For the ease of measurement, two
approximating polynomial equations of the x∗cr evolution, Eqs. (34) and (35) for the anti-phase and
in-phase vortex shedding, respectively, are given as follows:

x∗cr = −0.9649g∗4 + 6.2138g∗3 − 13.957g∗2 + 16.84g∗ − 1.1421, (34)

x∗cr = 0.2134g∗4 − 1.1097g∗3 + 2.8631g∗2 − 0.9426g∗ + 3.3848. (35)

In fact, a perfect anti-phase vortex shedding pattern is barely observed in the flip-flop regime
of side-by-side arrangements. The phase ∆φ of Cl dynamically switches between the in-phase and
anti-phase as time evolves. As a result, the distance x∗cr changes correspondingly as well. To inves-
tigate the disappearance of the flip-flop during lock-in in the vibrating side-by-side arrangement,
the time-averaged x∗cr at three typical instants, the flip-flop, the deflected gap flow regime and
the lock-in, is plotted in Fig. 23(b). The merging distance x∗cr during the flip-flop is identical to

FIG. 23. Relationship between the vortex merging distance x∗cr and gap ratio g ∗: (a) side-by-side arrangements at Re = 100
and g ∗ ∈ 0.5−2.0; (b) side-by-side arrangements at m∗= 10, ζ = 0.01, and g ∗ ∈ 0.5−1.25, where Cylinder1 vibrates in the
transverse direction.
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FIG. 24. Streamline plot of cylinders in a side-by-side arrangement at Re = 100, m∗= 10, ζ = 0.01, g ∗= 0.5, and Ur = 5,
where Cylinder1 vibrates in the transverse direction.

its stationary counterpart during in-phase vortex synchronization, as plotted in Fig. 23(a). On the
other hand, x∗cr in the deflected gap flow regime is much larger. This is illustrated via DMD modal
analysis, streamline plot, and x∗cr analysis. For instance, the in-phase vortex synchronization for
Re = 100, g∗ = 0.5, and Ur = 5 upsurges after 15D downstream in Figs. 12(a) and 12(c). It can
also be observed through its streamline plot in Fig. 24 that a large regular von Kármán vortex street
forms after 15D downstream. It is noticed that these time-averaged x∗cr values are not noticeably
influenced at Ur from 0 to 10 in the current work. Its counterpart at the stationary side-by-side
arrangement also shows x∗cr ≈ 18 in Fig. 23(b). Therefore, it is believed that the plotted x∗cr is
valid to indicate the position of the Hopf bifurcation in side-by-side arrangements. Since there is
a significant segregation of the pitchfork bifurcation and Hopf bifurcation, the flip-flop should be
significantly suppressed after the flow field transition into the deflected gap flow regime. However,
the vortex shedding frequency f vs on each cylinder is dynamically modulated by the dynamics of
the gap flow. As a result, ∆φ is constantly changing between 0◦ and 180◦ as shown in Figs. 7(d),
20(b)–20(d), and 22(b). When ∆φ approaches zero, the Hopf bifurcation manifest itself again in the
near-wake region at a very close x∗cr and the flip-flop is triggered.

Based on the discussion in the previous paragraph, we have a quantitative understanding on
the origin of the disappearance of the flip-flop during the lock-in of vibrating side-by-side arrange-
ments. Fig. 23(b) shows an even farther downstream vortex merging distance during lock-in. It
is believed that the likelihood of the flip-flop is even more sparse. Furthermore, since the vortex
shedding frequency f vs on each cylinder is synchronized to fn, the phase ∆φ=0 is unlikely to be
without frequency modulation and ∆φ will retain at about 90◦, as shown in Fig. 11(d). Therefore,
the flip-flop is not observed during the lock-in of vibrating side-by-side arrangements. However
although the gap flow deflects, f vs on each cylinder is identical. This is different from the character-
istics in the aforementioned deflected gap flow regime, in which narrow and wide near-wake regions
are formed and the frequency enhancement is observed in the narrow one. To shed some light, the
time-averaged x-component velocity profiles of the gap flow at Re = 100 and g∗ = 0.5 at different
Ur are plotted in Fig. 17(c). It shows that the velocity profiles are symmetry in the present of benign
motion during pre- and post-lock-in, except the one during frequency lock-in. This asymmetry
of flow field is not observed in the previously reported deflected gap flow regime. Therefore, the
deflected gap flow regime probably breaks down by the asymmetry of gap flow during the frequency
lock-in. It means that not only the Hopf bifurcation is developed farther downstream, but the pitch-
fork bifurcation breaks down during the frequency lock-in of vibrating side-by-side arrangements as
well.

V. CONCLUDING REMARKS

The present study investigated the interaction between the gap flow and VIV in a pair of
side-by-side circular cylinders, whereby one cylinder was stationary and its counterpart was free
to vibrate in the transverse direction. The gap flow dynamics in the stationary side-by-side cir-
cular cylinder arrangements was first reviewed and investigated using the wake flow visualization
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together with the spectral (HHT) and modal (SP-DMD) analysis techniques. Three flow regimes
namely, single-bluff-body regime (g∗ . 0.3), biased-flow/flip-flop regime (0.3 . g∗ . 1.25), and
parallel-vortex-street regime (1.25 . g∗ . 1.5) are shown with regard to the gap flow dynamics at
Re = 100. The focus has been placed on the flip-flop regime, in which there is a strong gap flow
formation with a low pressure region in the kernel of the gap flow. In the flip-flop regime, the gap
flow deflected toward one side of cylinders and switched over its direction intermittently. In the
deflected gap flow regime, a narrower near-wake region associated with a higher f vs and Cd due
to the enhanced vortex interaction and vice versa. A complex beating phenomenon was observed
in this regime. It was believed to be originated from this two-frequency flow regime caused by
the gap flow instability. As reported, the pitchfork and Hopf bifurcations were associated with the
deflected gap flow behavior and in-phase synchronization, respectively. In particular, the flip-flop
secondary instability, originated by the coupling of pitchfork and Hopf bifurcations as spontaneous
symmetry breaking, was visualized through the modal analysis based on SP-DMD for a range of
Reynolds numbers. We found that the flip-flop occurs at gap ratio g∗ = 0.5 after Re ≈ 92, when
the pitchfork and Hopf bifurcation regions superimpose. The exact moment of the flip-flop was
also quantified through the HHT analysis. The representative characteristic DMD modes of the
pitchfork bifurcation, Hopf bifurcation, and the flip-flop are extracted using SP-DMD for significant
influential modes.

Following the investigation for the stationary side-by-side arrangement, the gap flow and VIV
interaction in the vibrating side-by-side arrangements was investigated in a similar fashion. It was
found that the gap flow quasi-stably deflected toward the vibrating cylinder during the VIV fre-
quency lock-in. This was confirmed by analyzing the phase information ∆φ(t) of Cl using the HHT
analysis, in which the flip-flop (∆φ = 0) never occurred. Instead of the pitchfork bifurcation, it is
believed to be caused by an unbalanced gap flow strength in the near-wake region. On the other
hand, in the pre- and post-lock-in regions, the flip-flop is still conspicuous similar to the stationary
side-by-side arrangements, although the vibrations of the cylinder were still significant. The gap
flow interference on VIV dynamics was found to be significant. There were premature onset and
ending of the lock-in region owing to the gap flow interference in the flip-flop regime. The lock-in
region could be reduced by 43% approximately in some cases. This was confirmed through the
analysis between the frequency ratio f ∗Ay

and the reduced velocity Ur . On the contrary, in the
pre- and post-lock-in regimes, the mutual VIV and gap flow interference is not very significant
compared with the results of their corresponding stationary side-by-side counterparts. The gap flow
x-component velocity profiles during pre- and post-lock-in are very symmetric and resembling that
of the corresponding stationary setup. However, since the transverse amplitude Ay is still significant
during post-lock-in, their frequency responses did not follow the Strouhal relation.

The flip-flop was found to be a function of the gap flow strength, whereby the flip-flop fre-
quency fflip gradually increased as a function of the gap ratio g∗ and Reynolds number Re. The sym-
metry of the gap flow strength and the coupling of the pitchfork and Hopf bifurcations are the two
prerequisites to the flip-flopping phenomenon. Through DMD analysis, it was shown that the DMD
modes of the in-phase vortex synchronization was pushed further downstream and detached with
the pitchfork bifurcation region. This was confirmed through the DMD modal analysis, the vortex
merging distance x∗cr analysis, and the streamline plots. Two representative correlation expressions
were also introduced for the critical vortex merging distance. Therefore, as the detachment of two
bifurcations and the breakdown of the pitchfork bifurcation, the flip-flop disappeared during the
lock-in of the vibrating side-by-side arrangements. The origins of the deflected gap flow regime
and the flip-flopping phenomenon were further studied using the critical-point concept. With the
absence of source terms in the classical two dimensional cross flow problems, a strong vortex wake
is normally associated with a stable center and four-way indeterminant saddle point. Because of
the large velocity gradient on the outer ring of the strong wake and indeterminacy of its saddle
point, the fluid gap was guided or deflected to a particular direction. There were saddle points
observed intermittently in the middle path of the stationary side-by-side arrangements within the
flip-flop regime. Therefore, the path of the gap flow is indeterminant and switch its course inter-
mittently. On the other hand, the saddle point is always absent during the lock-in of the vibrating
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side-by-side arrangement and the gap flow was guided to the side of the vibrating cylinder perma-
nently. As a result, the flip-flop was not observed. In future, interactions between the flip-flop and
vortex-induced vibration will be investigated in detail at higher Reynolds number.
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