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ABSTRACT
In this article, the least-squares support vector machine

(LS-SVM) with linear system of equations is used to identify
the hydrodynamic derivatives of a three degree-of-freedom (3-
Dofs) maneuvering model for an ESSO 190000 dwt tanker. In-
stead of identifying the hydrodynamic derivative independently,
the highly-correlated hydrodynamic derivatives are identified to-
gether by LS-SVM and subsequently distinguished in sets of lin-
ear system of equations. The issue of parameter drift is briefly
discussed and diminished with the proposed approach. The train-
ing data are sampled from the simulated zigzag maneuver. The
computational procedures and set up of the support vector ma-
chine are discussed in detail. A number of predicted maneuvers
are compared with the reference maneuvers. Excellent accuracy
and generality of the estimated maneuvering model are achieved
based on the proposed system identification technique.
Keywords: system identification, ESSO tanker, least-
squares support vector machine, hydrodynamic derivatives,
parameter drift

1. INTRODUCTION
To analyze the hydrodynamic characteristics of a ship and

design an autopilot, a mathematical maneuvering model should
be developed to precisely describe the behavior characteristics
of the ship. To integrate the maneuvering model with modern
control systems, an accurate estimation of the ship maneuver-
ability is critical to the success of the design. The accuracy of
the estimation guarantees the effectiveness of prediction of the
maneuvering model and allows detection of anomalous changes.

The system identification (SI)-based approach provides an
effective and practical means to determine the hydrodynamic
characteristics of a vessel, in which only the state information
and inertia terms are required. The system identification in-
corporates a very wide research area with different techniques
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implemented for different mathematical models. Many SI tech-
niques had been implemented on nonlinear mathematical model
in the past, e.g, model reference method [1, 2], Extended Kalman
Filter (EKF) [3–5], least squares [6, 7], maximum likelihood [8],
recursive prediction error [9], frequency spectrum analysis [10],
particle swarm optimization [11] and genetic algorithm [12].

Machine learning and the neural networks have been applied
in a diverse scientific fields nowadays. More recently, the support
vector machine, SVM, was firstly implemented by Luo and Zou
(2009) [13] to identify the hydrodynamic derivatives of Abkowitz
model from the free-running model test. Subsequently, SVM was
successfully applied in many other cases [14–18]. In contrast to
neural networks, SVM requires no initial estimation of param-
eters, possesses a good generalization performance and returns
a global optimal and unique solution [19]. On the other hand,
neural networks was also implemented by many authors [20, 21]
to predict the maneuvers of a free-surface vessel with satisfactory
accuracy.

The main issue in the system identification is to deal with the
problem of parameter identifiability. It was reported by many au-
thors [13–15, 22] that some hydrodynamic derivatives are highly-
correlated and thus, impose a difficulty in the system identification
process. This issue is proposed as parameter drift. In this article,
a new approach is proposed to diminish the parameter drift by
implementing the least-squares support vector machine together
with linear system of equations, in which the highly-correlated hy-
drodynamic derivatives are identified together. Subsequently, the
combined hydrodynamic derivatives are distinguished by forming
sets of linear system of equations. The training data is collected
from 10◦/10◦ zigzag maneuver for an ESSO tanker. Excellent
accuracy is achieved using the proposed system identification
technique. The estimated hydrodynamic derivatives are used to
predict the motions of ship in different maneuvers, e.g., 20◦/20◦
zigzag and 35◦ turn circle maneuvers. The motion predicted by
the estimated maneuvering model are compared with the results
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obtained from the reference maneuvering model.
The article is organized in the following structure. In

Sect. 2.1, the nonlinear maneuvering model for an ESSO tanker
is presented. Following that, the numerical formulation of the
least-squares support vector machine is introduced in Sec. 2.2.
The issue of parameter drift and the proposed approach to dimin-
ish the parameter drift are discussed in Sec. 2.3. Subsequently,
the set up of the proposed system identification technique and
predicted results are presented in Sec. 3. Finally, the concluding
remarks are summarized in Sect. 4.

2. NUMERICAL FORMULATIONS
In this section, the numerical formulations of the nonlinear

maneuvering model of an ESSO 190000 dwt tanker and least-
squares support vector machine are introduced in detail. Sub-
sequently, the origin of the parameter drift is briefly discussed.
The highly-correlated hydrodynamic derivatives are identified to-
gether and distinguished in linear system of multiple designated
maneuvers. The estimated hydrodynamic derivatives and maneu-
vers are presented in Sect. 3.

2.1 Nonlinear maneuvering model for an ESSO tanker
The popular ship maneuvering models include Abkowtiz

(whole-ship) model [23], Mathematical Modular Group (MMG)
model [24] and response model [25]. In this article, LS-SVM
is used to identify a non-dimensional non-linear maneuvering
model [26] for an ESSO 190000 dwt tanker presented in Equa-
tion (1). Two coordinate systems are used, the earth-fixed global
inertial frame 𝑜0 − 𝑥0𝑦0𝑧0 and the body-fixed local moving frame
𝑜0 − 𝑥0𝑦0𝑧0. The 𝑧 axis of the body-fixed local moving frame
points downward and its origin is at the free surface level. The
𝑥 − 𝑦 plane of two coordinate systems coincide. The initial loca-
tions of respective axes in both coordinate systems are parallel.

�̇� − 𝑣𝑟 = 𝑔𝑋 ′′ (1a)
�̇� + 𝑢𝑟 = 𝑔𝑌 ′′ (1b)

(𝐿𝑘 ′′𝑧 )2�̇� + 𝐿𝑥′′𝐺𝑢𝑟 = 𝑔𝐿𝑁
′′ (1c)

where the superscript of double prime denotes the non-
dimensionalization in Bis system [27]. Bis system can be used
for zero-speed as well as high-speed applications, because the di-
vision of speed𝑈 is avoided. 𝑔 and 𝐿 = 𝐿𝑝𝑝 are the gravitational
acceleration and the length of the ship, where 𝐿𝑝𝑝 is the length
between perpendiculars. 𝑘 ′′𝑧 and 𝑥′′

𝐺
defined in Equation (2) are

the non-dimensional radius of gyration of the ship in yaw and
non-dimensional x coordinate of the centre of gravity of the ship.
𝐼𝑧 is the moment of inertia about 𝑧-axis. Here the ship is assumed
geometrically symmetric, 𝑦𝐺 = 0.0.

𝑘 ′′𝑧 = 𝐿−1
√︁
𝐼𝑧/𝑚 (2a)

𝑥′′𝐺 = 𝐿−1𝑥𝐺 (2b)

𝑋 ′′, 𝑌 ′′ and 𝑁 ′′ in Equation (3) are the generalized non-
dimensionalized forces and moment in surge, the sway and yaw

motions, respectively.

𝑋 ′′ = 𝑋 ′′ (�̇�, 𝑢, 𝑣, 𝑟, 𝑇, 𝜁 , 𝑐, 𝛿) (3a)
𝑌 ′′ = 𝑌 ′′ (�̇�, 𝑢, 𝑣, 𝑟, 𝑇, 𝜁 , 𝑐, 𝛿) (3b)
𝑁 ′′ = 𝑁 ′′ (�̇� , 𝑢, 𝑣, 𝑟, 𝑇, 𝜁 , 𝑐, 𝛿) (3c)

where 𝑢, 𝑣 and 𝑟 = �̇� respectively are the velocity in the surge
(forward), the sway (starboard) and the yaw motion. 𝜓 is the yaw
angle (in the horizontal plane). 𝑇 , 𝜁 , 𝑐 and 𝛿 are respectively the
propeller thrust, the water depth parameter, the flow velocity at
the rudder and the rudder angle. The overdot represent the time
derivative of a variable. Therefore, the non-dimensional forces
in surge, sway and yaw can be formulated as

𝑔𝑋 ′′ = 𝑋 ′′
�̇� �̇� + 𝐿−1𝑋 ′′

𝑢𝑢𝑢
2 + 𝑋 ′′

𝑣𝑟 𝑣𝑟 + 𝐿−1𝑋 ′′
𝑣𝑣𝑣

2

+ 𝐿−1𝑋 ′′
𝑐 |𝑐 | 𝛿 𝛿𝑐 |𝑐 |𝛿

2 + 𝐿−1𝑋 ′′
𝑐 |𝑐 |𝛽𝛿𝑐 |𝑐 |𝛽𝛿 + 𝑋

′′
�̇�𝜁 �̇�𝜁

+ 𝐿−1𝑋 ′′
𝑢𝑢𝜁 𝑢

2𝜁 + 𝑋 ′′
𝑣𝑟 𝜁 𝑣𝑟𝜁

+ 𝐿−1𝑋 ′′
𝑣𝑣𝜁 𝜁 𝑣

2𝜁2 + 𝑔𝑇 ′′ (1 − 𝑡) (4a)

𝑔𝑌 ′′ = 𝑌 ′′
�̇� �̇� + 𝐿−1𝑌 ′′

𝑢𝑣𝑢𝑣 + 𝐿−1𝑌 ′′
𝑣 |𝑣 |𝑣 |𝑣 | + 𝐿

−1𝑌 ′′
𝑐 |𝑐 | 𝛿𝑐 |𝑐 |𝛿

+ 𝑌 ′′
𝑢𝑟𝑢𝑟 + 𝐿−1𝑌 ′′

|𝑐 |𝑐 |𝛽 |𝛽 | 𝛿 | |𝑐 |𝑐 |𝛽 |𝛽 |𝛿 | + 𝑌
′′
𝑢𝑟𝜁 𝑢𝑟𝜁

+ 𝐿−1𝑌 ′′
𝑢𝑣𝜁 𝑢𝑣𝜁 + 𝐿−1𝑌 ′′

|𝑣 |𝑣𝜁 |𝑣 |𝑣𝜁

+ 𝐿−1𝑌 ′′
|𝑐 |𝑐 |𝛽 |𝛽 | 𝛿 |𝜁 |𝑐 |𝑐 |𝛽 |𝛽 |𝛿 |𝜁 + 𝑌

′′
�̇�𝜁 �̇�𝜁 + 𝑌 ′′

𝑇 𝑔𝑇
′′ (4b)

𝑔𝐿𝑁 ′′ = 𝐿2 (𝑁 ′′
�̇� �̇� + 𝑁 ′′

�̇� 𝜁 �̇� 𝜁) + 𝑁 ′′
𝑢𝑣𝑢𝑣 + 𝐿𝑁 ′′

|𝑣 |𝑟 |𝑣 |𝑟
+ 𝑁 ′′

|𝑐 |𝑐𝛿 |𝑐 |𝑐𝛿 + 𝐿𝑁
′′
𝑢𝑟𝑢𝑟 + 𝑁 ′′

|𝑐 |𝑐 |𝛽 |𝛽 | 𝛿 | |𝑐 |𝑐 |𝛽 |𝛽 |𝛿 |
+ 𝐿𝑁 ′′

𝑢𝑟𝜁 𝑢𝑟𝜁 + 𝑁 ′′
𝑢𝑣𝜁 𝑢𝑣𝜁 + 𝐿𝑁 ′′

|𝑣 |𝑟 𝜁 |𝑣 |𝑟𝜁
+ 𝑁 ′′

|𝑐 |𝑐 |𝛽 |𝛽 | 𝛿 |𝜁 |𝑐 |𝑐 |𝛽 |𝛽 |𝛿 |𝜁 + 𝐿𝑁
′′
𝑇 𝑔𝑇

′′ (4c)

𝑡 is the thrust deduction factor. The non-dimensionalized thrust
𝑇 ′′ and flow velocity 𝑐 at the rudder are defined as

𝑔𝑇 ′′ = 𝐿−1𝑇 ′′
𝑢𝑢𝑢

2 + 𝑇 ′′
𝑢𝑛𝑢𝑛 + 𝐿𝑇 ′′

|𝑛 |𝑛 |𝑛|𝑛 (5a)

𝑐2 = 𝑐𝑢𝑛𝑢𝑛 + 𝑐𝑛𝑛𝑛2 (5b)

where 𝑐𝑢𝑛 and 𝑐𝑛𝑛 are constant values. 𝑛 is the rpm of the
propeller shaft. The water depth parameter 𝜁 is defined in Equa-
tion (6), where ℎ and 𝑑 are the water depth and draft of the ship
respectively. It is used to incorporate the influence of water depth
on the hydrodynamic derivatives, and 𝛽 defines the drift angle.

𝜁 =
𝑑

ℎ − 𝑑 ; 𝛽 = 𝑣/𝑢 (6)

The primary particulars of the ESSO 190000 dwt tanker is listed
in Tab. 1.

2.2 Least-squares support vector machine
In this section, a brief overview of support vector ma-

chines [28] and least-squares support vector machines [29]. The
support vector machine was originally derived in the statistical
learning theory as early as 1960s and proposed for the applica-
tions of classification.

More recently, SVM was used in the applications of regres-
sion analysis, e.g., 𝜀-Support Vector Machine (𝜀-SVM). Typ-
ically, the 𝜀-SVM is solved as nonlinear regression problems
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Length between perpendiculars (𝐿𝑝𝑝) 304.8 (m)
Beam (B) 47.17 (m)
Draft to design waterline (T) 18.46 (m)
Displacement (∇) 220000 (𝑚3)
𝐿𝑝𝑝/𝐵 6.46
B/T 2.56
Block coefficient (𝐶𝐵) 0.83
Design speed (𝑢0) 16 (knots)
Propeller Speed 80 (rpm)

TABLE 1: Primary particulars of an ESSO 190000 dwt tanker

by means of convex quadratic programs using Quadratic opti-
mization. In LS-SVM, the inequality constraints is replaced by
equality constraints and use a squared loss function instead of
𝜀-insensitive loss function. In LS-SVR, the objective is to define
an optimal hyperplane as shown in Equation (7)

𝑓 (𝒙𝑖) = 𝒘𝑇 · 𝜑(𝒙𝑖) + 𝑏 ∀𝑖 = 1, ..., 𝑁
(𝒙𝑖 ∈ R𝑛, 𝜑(𝒙𝑖) ∈ R𝑁 ,𝒘 ∈ R𝑛) (7)

where 𝑓 (𝒙𝑖) and 𝑏 are the estimated scalar output with respect to
𝒙𝑖 and the optimal bias of the system. R𝑛 represents a Euclidean
space of dimension 𝑛, e.g., 𝑏 ∈ R0 indicates a scalar. 𝒙 and 𝒘 are
the vector input of training set and the optimal weight matrix of
system respectively. 𝜑(𝒙) is a mapping function, which projects
𝒙 into a high-dimensional feature space R𝑁 (𝑁 ≫ 𝑛).

Minimizing the empirical risk functional in the feature space
with a squared loss term leads to the following primal optimiza-
tion formulation in Equation (8).

min: 𝑓 (𝒘, 𝑒) = 1
2
𝒘𝑇𝒘 + 1

2
𝐶

𝑁∑︂
𝑖=1

𝑒2
𝑖 (8a)

s.t.: 𝑦𝑖 = 𝒘𝑇𝜑(𝒙𝑖) + 𝑏 + 𝑒𝑖 𝑖 = 1, ..., 𝑁 (8b)

where 𝑒𝑖 is the error. 𝐶 is the regularization parameter/structural
risk, which balances the model accuracy and generality of the
model. The optimization problem in Equation (8) can be formu-
lated as a Lagrange function as shown below.

L(𝒘, 𝑏, 𝑒𝑖 , 𝛼𝑖) =
1
2
𝒘𝑇𝒘 + 1

2
𝐶

𝑁∑︂
𝑖=1

𝑒2
𝑖

−
𝑁∑︂
𝑖=1

𝛼𝑖
[︁
𝒘𝑇𝜑(𝒙𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖

]︁
(9)

where 𝛼𝑖 is the Lagrange multiplier. In accordance to Karush-
Kuhn-Tucker conditions (KKT) [29], Equation (9) can be solved
and re-cast into the dual form as

𝜕L

𝜕𝒘
= 0 −→ 𝒘 =

𝑁∑︂
𝑖=1

𝛼𝑖𝜑(𝒙𝑖) (10a)

𝜕L

𝜕𝑏
= 0 −→

𝑁∑︂
𝑖=1

𝛼𝑖 = 0 (10b)

𝜕L

𝜕𝑒𝑖
= 0 −→ 𝛼𝑖 = 𝐶𝑒𝑖 (10c)

𝜕L

𝜕𝛼𝑖
= 0 −→ 𝒘𝑇𝜑(𝒙𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖 = 0 (10d)

where 𝑖 = 1, ..., 𝑁 . 𝑁 is the dimension of the feature space.
By substituting Equation (10a) and Equation (10c) into Equa-
tion (10d), Equation (10b) and Equation (10d) can be re-cast into
the state space form as shown below.[︄

0.0
−→
1.0𝑇

−→
1.0 𝑲 + 𝐶−1𝑰

]︄ [︃
𝑏
−→𝜶

]︃
=

[︃0.0
−→
𝒀

]︃
(11)

where 𝑰 is an identity matrix of 𝑁 × 𝑁 , and
−→
1.0 = [1.0, ..., 1.0]𝑇

is a unity vector.
−→
𝒀 = [𝑦1, ..., 𝑦𝑁 ]𝑇 and −→𝜶 = [𝛼1, ..., 𝛼𝑁 ]𝑇 . The

kernel is defined as 𝐾 (𝒙𝑖 · 𝒙𝑗 ) = 𝜑(𝒙𝑖)𝑇𝜑(𝒙𝑗 ), 𝑖, 𝑗 = 1, ..., 𝑁 ,
which is positive definite and satisfies the Mercer condition [30,
31]. In this work, the linear kernel function is used for system
identification. Hence the optimal hyperplane can be formulated
as

𝑦(𝒙𝑖) =
𝑁∑︂
𝑗=1

𝛼𝑖𝐾 (𝒙𝑖 , 𝒙𝑗 ) + 𝑏 𝑖 = 1, ..., 𝑁 (12)

2.3 Parameter drift and linear system of hydrodynamic
derivatives
The parameter drift is a severe issue in system identifica-

tion of a free-surface vessel maneuvering models. Owing to the
parameter drift, the values of highly-correlated hydrodynamic
derivative trade off among each other. Hence, multiple sets of
hydrodynamic derivatives can match with the solutions to the
maneuvering model. It was reported that the mathematical ori-
gin of the parameter drift is (1) the dynamic cancellation for the
linear terms [32, 33] and (2) the multicollinearity for the non-
linear terms [34]. Recently, it was reported that the parameter
drift is also dependent upon different maneuvers [35], in which
its physical significance was discussed.

Different approaches were proposed to diminish and allevi-
ate the extent of parameter drift [34, 35]. In this article, a new
approach is proposed to diminish the parameter drift by identify-
ing the highly-correlated hydrodynamic derivatives together as a
single parameter and subsequently distinguishing them via linear
system of equations using multiple maneuvers. This approach
is motivated by observation of the maneuvering model. For ex-
ample, 𝑋 ′′

𝑢𝑢𝜉
is defined as the gradient of the force in the surge

direction with respect to the variation of 𝑢 and 𝜉. However, 𝜉 is
kept constant in each individual maneuver at a particular water
depth. It means 𝑋 ′′

𝑢𝑢, 𝑋 ′′
𝑢𝑢𝜉

and 𝑇 ′′
𝑢𝑢 are highly correlated during
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the maneuver, and the values of these three terms are going to
trade off among themselves. The results from 10◦/10◦ zigzag
manoeuver at water depth 200 meter are taken as an example.
The correlation coefficients of the hydrodynamic derivatives are
listed in Table 2, 3 and 4. The highly correlated terms in surge,
sway and yaw are highlighted with italic font, e.g., more than 95%
correlated terms. It can be seen that the 𝜉, 𝑡 and 𝑛 are constant
and redundant terms in the maneuver, and do not contribute to
the gradients of the states. Hence 𝑢2/𝐿 and 𝜉𝑢2/𝐿 are highly
correlated and so on.

To get rid of the influence of parameter drift, the highly
correlated terms, e.g., 𝑋 ′′

𝑢𝑢, 𝑋 ′′
𝑢𝑢𝜉

and 𝑇 ′′
𝑢𝑢 in surge, are identified

together during system identification. The detailed procedures of
identifying the hydrodynamic derivatives are presented below. To
perform the system identification process, Equation (1) is re-cast
into the following form.

(1 − 𝑋 ′′
�̇� − 𝑋 ′′

�̇� 𝜉 𝜉)�̇� = 𝑔′′1 (𝑢, 𝑣, 𝑟, 𝑇, 𝜉, 𝑐, 𝛿) (13a)

(1 − 𝑌 ′′
�̇� − 𝑌 ′′

�̇� 𝜉 𝜉) �̇� = 𝑔′′2 (𝑢, 𝑣, 𝑟, 𝑇, 𝜉, 𝑐, 𝛿) (13b)

(𝑘2
𝑧 − 𝑁 ′′

�̇� − 𝑁 ′′
�̇� 𝜉 𝜉)�̇� = 𝑔′′3 (𝑢, 𝑣, 𝑟, 𝑇, 𝜉, 𝑐, 𝛿) (13c)

The force terms 𝑔′′1 , 𝑔′′2 and 𝑔′′3 are re-arranged as shown below.

𝑔′′1 = 𝒘𝑇
𝑋 · 𝑨𝑋 (14a)

𝑔′′2 = 𝒘𝑇
𝑌 · 𝑨𝑌 (14b)

𝑔′′3 = 𝒘𝑇
𝑁 · 𝑨𝑁 (14c)

where

𝒘𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋 ′′
𝑢𝑢 + 𝑋 ′′

𝑢𝑢𝜉
𝜉 + (1.0 − 𝑡)𝑇 ′′

𝑢𝑢

1.0 + 𝑋 ′′
𝑣𝑟 + 𝑋 ′′

𝑣𝑟 𝜉
𝜉

𝑋 ′′
𝑣𝑣 + 𝑋 ′′

𝑣𝑣𝜉 𝜉
𝜉2

𝑋 ′′
|𝑐 |𝑐𝛿 𝛿
𝑋 ′′
|𝑐 |𝑐𝛽𝛿
𝑇 ′′
𝑢𝑛

𝑇 ′′
|𝑛 |𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15a)

𝒘𝑌 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑌 ′′
𝑢𝑣 + 𝑌 ′′

𝑢𝑣𝜉
𝜉

𝑌 ′′
|𝑣 |𝑣 + 𝑌

′′
|𝑣 |𝑣𝜉 𝜉

𝑌 ′′
|𝑐 |𝑐𝛿

𝑌 ′′
𝑢𝑟 − 1.0 + 𝑌 ′′

𝑢𝑟 𝜉
𝜉

𝑌 ′′
|𝑐 |𝑐 |𝛽 |𝛽 | 𝛿 | + 𝑌

′′
|𝑐 |𝑐 |𝛽 |𝛽 | 𝛿 | 𝜉 𝜉

𝑌 ′′
𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15b)

𝒘𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁 ′′
𝑢𝑣 + 𝑁 ′′

𝑢𝑣𝜉
𝜉

𝑁 ′′
|𝑣 |𝑟 + 𝑁

′′
|𝑣 |𝑟 𝜉 𝜉

𝑁 ′′
|𝑐 |𝑐𝛿

𝑁 ′′
𝑢𝑟 − 𝑥′′𝐺 + 𝑁 ′′

𝑢𝑟 𝜉
𝜉

𝑁 ′′
|𝑐 |𝑐 |𝛽 |𝛽 | 𝛿 | + 𝑁

′′
|𝑐 |𝑐 |𝛽 |𝛽 | 𝛿 | 𝜉 𝜉

𝑁 ′′
𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15c)

𝑨𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢2/𝐿
𝑣𝑟

𝑣2/𝐿
|𝑐 |𝑐𝛿2/𝐿
|𝑐 |𝑐𝛽𝛿/𝐿
(1 − 𝑡)𝑢𝑛

(1 − 𝑡) |𝑛|𝑛𝐿

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16a)

𝑨𝑌 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑣/𝐿
|𝑣 |𝑣/𝐿
|𝑐 |𝑐𝛿/𝐿
𝑢𝑟

|𝑐 |𝑐 |𝛽 |𝛽 |𝛿 |/𝐿
𝑔𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16b)

𝑨𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑣/𝐿2

|𝑣 |𝑟/𝐿
|𝑐 |𝑐𝛿/𝐿2

𝑢𝑟/𝐿
|𝑐 |𝑐 |𝛽 |𝛽 |𝛿 |/𝐿2

𝑔𝑇/𝐿

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16c)

To illustrate the proposed computational procedures, the
identification of hydrodynamic derivatives in surge is taken as
an example and shown in Equation (17) to Equation (20). Here it
is assumed the added-mass/acceleration terms, eg., 𝑋 ′′

�̇� and 𝑋 ′′
�̇� 𝜉

,
and the performance of the thruster in open water, e.g., 𝑇 ′′

𝑢𝑢, 𝑇 ′′
𝑢𝑛,

𝑇 ′′
|𝑛 |𝑛, 𝑐𝑢𝑛, 𝑐𝑛𝑛 and 𝑡, are known a prior. For instance, two maneu-

vers at different water depth, ℎ = 200.0 [m] and ℎ = 50.0 [m], are
simulated for the purpose of system identification. The solutions
to the linear equations of the surge motion can be obtained as.

𝑋 ′′
𝑢𝑢 +

18.46
200 − 18.46

𝑋 ′′
𝑢𝑢𝜉 + (1 − 0.22) · (−0.00695)

= −0.04359 (17a)

𝑋 ′′
𝑢𝑢 +

18.46
50 − 18.46

𝑋 ′′
𝑢𝑢𝜉 + (1 − 0.22) · (−0.00695)

= −0.04650 (17b)

=⇒
{︃
𝑋 ′′
𝑢𝑢 = −0.0376
𝑋 ′′
𝑢𝑢𝜉

= −0.0060 (17c)

1.0 + 𝑋 ′′
𝑣𝑟 +

18.46
200 − 18.46

𝑋 ′′
𝑣𝑟 𝜉 = 2.05754 (18a)

1.0 + 𝑋 ′′
𝑣𝑟 +

18.46
50 − 18.46

𝑋 ′′
𝑣𝑟 𝜉 = 2.24333 (18b)

=⇒
{︃
𝑋 ′′
𝑣𝑟 = 1.02
𝑋 ′′
𝑣𝑟 𝜉

= 0.385 (18c)

𝑋 ′′
𝑣𝑣 + 𝑋 ′′

𝑣𝑣𝜉 𝜉

(︁ 18.46
200 − 18.46

)︁2
= 0.29648 (19a)

𝑋 ′′
𝑣𝑣 + 𝑋 ′′

𝑣𝑣𝜉 𝜉

(︁ 18.46
50 − 18.46

)︁2
= 0.29706 (19b)

=⇒
{︃
𝑋 ′′
𝑣𝑣 = 0.300
𝑋 ′′
𝑣𝑣𝜉 𝜉

= 0.0017 (19c)
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coeffi

cients
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derivatives

in
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◦
/10

◦
zigzag

m
aneuver:yaw

and
condition

num
ber=

7
.7864

×
10 16

𝑋 ′′
|𝑐 |𝑐𝛿 𝛿 = −0.093 (20a)

𝑋 ′′
|𝑐 |𝑐𝛽𝛿 = 0.152 (20b)

The rest of estimated hydrodynamic derivatives are presented
in the next section. Furthermore, the correlation coefficients of
the hydrodynamic derivatives are analyzed again for the proposed
system identification scheme in Table 5, 6 and 7 for surge, sway
and yaw, respectively. It can be observed that the number of the
highly correlated terms become very sparse via the proposed sys-
tem identification scheme. In particular, the condition numbers
of the covariance matrices are tremendously diminished by 13
orders of magnitudes, as shown in Table 2 to 7.

The set up of system identification and the results of the
estimated hydrodynamic derivatives are presented in the next
section. By identifying the hydrodynamic derivatives in this way,
a more consistent method can be obtained.

3. RESULTS AND DISCUSSION
3.1 Set up for system identification

To obtain the training data, the simulated results from two
10◦/10◦ zigzag maneuvers at different water depths, ℎ = 200.0
[m] and ℎ = 50.0 [m], and the same designed velocity 𝑢0 = 16.0
[kn] are collected. The 20◦/20◦ zigzag, 35◦ turn circle and
10◦/10◦ zigzag maneuvers are taken as examples to compare the
referential and predicted maneuvers subsequently. All simula-
tions are conducted for the same time window, 𝑡 ∈ [0, 600] [sec].
The maneuvering results in the initial 200 [sec] are chosen for
analysis, in order to investigate the transient characteristics of the
states. The sampling time is 𝑑𝑡 = 0.02 [s]. To obtain excellent
accuracy, the generality is compromised by tuning LS-SVR to its
highest accuracy. Hence, the regularization parameter, 𝐶, is set
at: 𝐶 = 1× 107 for the surge and sway motions and 𝐶 = 1× 1011

for the yaw motion.

3.2 Determination of hydrodynamic derivatives
To identify each hydrodynamic derivative in Equation (4),

two computational procedures are taken in the proposed system
identification scheme in Sect. 2.3: (1) system identification using
LS-SVM (2) solving linear system equations to distinguish highly
correlated terms. In step (1), the highly correlated hydrodynamic
derivatives are combined and identified together using LS-SVM,
as shown in Equation (13) and (14). In order to distinguish the
highly correlated terms, multiple maneuvers are taken at different
problem setups in step (2). For instance, two maneuvers at dif-
ferent water depth ℎ = 200.0 [m] and ℎ = 50.0 [m] are chosen to
form the linear system equations. It is important to ensure that the
characteristic matrix of the formed linear system equation should
be invertible, e.g., Equation (17) to Equation (19). This procedure
can be generalized to the other maneuvering models, such that
the redundant terms can be successfully separated in the linear
system equations. Hence, a customized design of the combina-
tion of highly correlated hydrodynamic derivatives and the linear
system equations should be derived for the system identification
of a particular maneuvering model.

The referential and estimated hydrodynamic derivatives are
listed in Table 8. It can be seen that the estimated results
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FIGURE 1: 20◦/20◦ zigzag maneuver at h = 200.0 [m] and u0 = 16.0 [kn] by LS-SVR and linear system: (a) u vs. time; (b) v vs. time; (c) r vs.
time; (d) x vs. y ; (e) ψ vs. time
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FIGURE 2: 35◦ turn circle maneuver at h = 200.0 [m] and u0 = 16.0 [kn] by LS-SVR and linear system: (a) u vs. time; (b) v vs. time; (c) r vs.
time; (d) x vs. y ; (e) ψ vs. time
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match very well with the referential values from Fossen et al.
(1994) [26]. In terms of the value of 𝑌 ′′

𝑢𝑣𝜉
, 0 for 𝜉 < 0.8 and

-0.85(1.0-0.8/𝜉) for 𝜉 ⩾ 0.8. Because the training data are col-
lected from the maneuvers at 𝜉 < 0.8, the estimated value of
𝑌 ′′
𝑢𝑣𝜉

is zero in Table 8. Those estimated hydrodynamic deriva-
tives show that the proposed system identification approach using
LS-SVR and linear system of equations can estimate the hydrody-
namic derivatives precisely with respect to the referential values.

3.3 Prediction of maneuvers
The estimated hydrodynamic derivatives are substituted into

the ESSO tanker maneuvering model. Its results are compared
with those obtained from the referential hdyrodynamic deriva-
tives. Three maneuvers are simulated for the purpose of com-
parison: (1) 20◦/20◦ zigzag maneuver at ℎ = 200.0 [m] and
𝑢0 = 16.0 [kn]; (2) 35◦ turn circle maneuver at ℎ = 200.0 [m]
and 𝑢0 = 16 [kn]; (3) 10◦/10◦ zigzag maneuver at ℎ = 50.0 [m]
and 𝑢0 = 10.0 [kn]. The results are plotted in Fig. 1, Fig. 2
and Fig. 3 for the 20◦/20◦ zigzag, 35◦ turn circle and 10◦/10◦
maneuvers respectively. The comparison show that the predicted
results obtained from the estimated hydrodynamic derivatives
match excellently with those obtained from referential values.
The discrepancy between the prediction and the reference results
are not noticeable.

4. CONCLUSIONS
The least-squares support vector machine together with lin-

ear system equations was implemented to identify the hydrody-
namic derivatives of a maneuvering model of an ESSO 190000
dwt tanker. The issue of parameter drift was tackled by identify-
ing the highly-correlated hydrodynamic derivatives together and
subsequently distinguishing them via linear system of equations.
The two basic computational procedures were involved in the
proposed system identification scheme: (1) combining the highly
correlated hydrodynamic derivatives and identifying them using
LS-SVM; (2) forming linear system equations to distinguish the
highly correlated hydrodynamic derivatives. The estimated hy-
drodynamic derivatives matched very well with the referential
values in literature. The estimated hydrodynamic derivatives
were subsequently used to predict the maneuvers of the ship. The
predicted results matched precisely with the referential results.
The present method is proven to reliably solve even highly cor-
related maneuvering models. It can be generalized to the other
maneuvering models by a correct combination of the highly cor-
related hydrodynamic terms and an appropriate design of the
linear system equations. Therefore it is applicable to a variety of
vessels with potential for strong parameter drift, where existing
methods may not be sufficiently robust.

REFERENCES
[1] Hayes, Michael Ney. “Parametric identification of nonlin-

ear stochastic systems applied to ocean vehicle dynamics.”
(1971).

[2] Van Amerongen, Job. “Adaptive steering of ships—A model
reference approach.” Automatica Vol. 20 No. 1 (1984): pp.
3–14.

[3] Abkowitz, Martin A. “Measurement of hydrodynamic char-
acteristics from ship maneuvering trials by system identifi-
cation.” Technical report no. 1980.

[4] Shi, CJ, Zhao, D, Peng, J and Shen, C. “Identification of
ship maneuvering model using extended Kalman Filters.”
Marine Navigation and Safety of Sea Transportation (2009):
pp. 105–110.

[5] Perera, Lokukaluge P, Oliveira, P and Guedes Soares, C.
“System identification of nonlinear vessel steering.” Jour-
nal of Offshore Mechanics and Arctic Engineering Vol. 137
No. 3 (2015).

[6] Holzhüter, T. “Robust Identification Scheme in an Adaptive
Track-Controller for Ships.” Adaptive Systems in Control
and Signal Processing 1989. Elsevier (1990): pp. 461–466.

[7] Muñoz-Mansilla, Rocío, Aranda, Joaquín, Díaz,
José Manuel and De La Cruz, J. “Parametric model
identification of high-speed craft dynamics.” Ocean
Engineering Vol. 36 No. 12-13 (2009): pp. 1025–1038.

[8] Astrom, KJ. “Maximum likelihood and prediction error
methods.” IFAC Proceedings Volumes Vol. 12 No. 8 (1979):
pp. 551–574.

[9] Zhou, Wei-Wu and Blanke, Mogens. “Identification of
a class of nonlinear state-space models using RPE tech-
niques.” 1986 25th IEEE Conference on Decision and Con-
trol: pp. 1637–1642. 1986. IEEE.

[10] Bhattacharyya, Sriman K and Haddara, Mahmoud R. “Para-
metric identification for nonlinear ship maneuvering.” Jour-
nal of ship research Vol. 50 No. 3 (2006): pp. 197–207.

[11] Xiong, Hejing, Chen, Mianyun, Lin, Yi, Chen, Yongbing
and Song, Yexin. “Parameters identification for ship motion
model based on particle swarm optimization.” Kybernetes
(2010).

[12] Sutulo, Serge and Soares, C Guedes. “An algorithm for of-
fline identification of ship manoeuvring mathematical mod-
els from free-running tests.” Ocean Engineering Vol. 79
(2014): pp. 10–25.

[13] Luo, WL and Zou, ZJ. “Parametric identification of ship
maneuvering models by using support vector machines.”
Journal of Ship Research Vol. 53 No. 1 (2009): pp. 19–30.

[14] Zhang, Xin-guang and Zou, Zao-jian. “Identification of
Abkowitz model for ship manoeuvring motion using 𝜀-
support vector regression.” Journal of hydrodynamics
Vol. 23 No. 3 (2011): pp. 353–360.

[15] Wang, Xue-gang, Zou, Zao-jian, Hou, Xian-rui and Xu,
Feng. “System identification modelling of ship manoeu-
vring motion based on 𝜀-support vector regression.” Jour-
nal of Hydrodynamics Vol. 27 No. 4 (2015): pp. 502–512.

[16] Wang, Xue-gang, Zou, Zao-jian, Yu, Long and Cai, Wei.
“System identification modeling of ship manoeuvring mo-
tion in 4 degrees of freedom based on support vector ma-
chines.” China Ocean Engineering Vol. 29 No. 4 (2015):
pp. 519–534.

[17] Zhu, Man, Hahn, Axel, Wen, Yuanqiao and Bolles, A. “Pa-
rameter identification of ship maneuvering models using
recursive least square method based on support vector ma-
chines.” TransNav: International Journal on Marine Navi-
gation and Safety of Sea Transportation Vol. 11 (2017).

12 Copyright © 2024 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/O

M
AE/proceedings-pdf/O

M
AE2024/87837/V05BT06A020/7361184/v05bt06a020-om

ae2024-120821.pdf by N
ew

castle U
niversity user on 05 N

ovem
ber 2024



[18] Xu, Haitong, Hassani, Vahid, Hinostroza, MA and Soares,
C Guedes. “Real-Time Parameter Estimation of Nonlinear
Vessel Steering Model Using Support Vector Machine.”
ASME 2018 37th International Conference on Ocean,
Offshore and Arctic Engineering: pp. V11BT12A009–
V11BT12A009. 2018. American Society of Mechanical En-
gineers.

[19] Luo, Weilin and Cai, Wenlong. “Modeling of ship manoeu-
vring motion using optimized support vector machines.”
Fifth International Conference on Intelligent Control and
Information Processing: pp. 476–478. 2014. IEEE.

[20] Rajesh, G and Bhattacharyya, SK. “System identification
for nonlinear maneuvering of large tankers using artificial
neural network.” Applied Ocean Research Vol. 30 No. 4
(2008): pp. 256–263.

[21] Luo, Weilin and Zhang, Zhicheng. “Modeling of ship ma-
neuvering motion using neural networks.” Journal of Ma-
rine Science and Application Vol. 15 No. 4 (2016): pp.
426–432.

[22] Luo, Weilin and Li, Xinyu. “Measures to diminish the
parameter drift in the modeling of ship manoeuvring using
system identification.” Applied Ocean Research Vol. 67
(2017): pp. 9–20.

[23] Abkowitz, Martin A. “Lectures on ship hydrodynamics–
Steering and manoeuvrability.” Technical report no. 1964.

[24] Ogawa, Atsushi and Kasai, H. “On the mathematical model
of manoeuvring motion of ships.” International Shipbuild-
ing Progress Vol. 25 No. 292 (1978): pp. 306–319.

[25] Nomoto, Kensaku, Taguchi, Kenshi, Honda, Keinosuke and
Hirano, Susumu. “On the steering qualities of ships.” Jour-
nal of Zosen Kiokai Vol. 1956 No. 99 (1956): pp. 75–82.

[26] Fossen, T. I. et al. Guidance and control of ocean vehicles.
Vol. 199. Wiley New York (1994).

[27] Fossen, T. I. Handbook of marine craft hydrodynamics and
motion control. John Wiley & Sons (2011).

[28] Vapnik, V. N. Statistical learning theory. Wiley, New York
(1998).

[29] Suykens, J. A. K. et al. Least squares support vector ma-
chines. World Scientific (2002).

[30] Vapnik, V. The nature of statistical learning theory.
Springer science & business media (2013).

[31] Suykens, J. A. K. and Vandewalle, J. “Least squares support
vector machine classifiers.” Neural processing letters Vol. 9
No. 3 (1999): pp. 293–300.

[32] Hwang, W. “Cancellation effect and parameter identifiabil-
ity of ship steering dynamics.” International Shipbuilding
Progress Vol. 29 No. 332 (1982): pp. 90–102.

[33] Clarke, D., Gedling, P. and Hine, G. “The application of
manoeuvring criteria in hull design using linear theory.”
Transactions of the Royal Institution of Naval Architects,
RINA. (1982).

[34] Luo, W. and Li, X. “Measures to diminish the parameter
drift in the modeling of ship manoeuvring using system
identification.” Applied Ocean Research Vol. 67 (2017):
pp. 9–20.

[35] Liu, B. and Magee, A. R. “Analysis of parameter drift in
system identification of ship manoeuvre model using neural
networks and support vector regression.” Applied Ocean
Research (under review) .

13 Copyright © 2024 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/O

M
AE/proceedings-pdf/O

M
AE2024/87837/V05BT06A020/7361184/v05bt06a020-om

ae2024-120821.pdf by N
ew

castle U
niversity user on 05 N

ovem
ber 2024


	1 Introduction
	2 Numerical formulations
	2.1 Nonlinear maneuvering model for an ESSO tanker
	2.2 Least-squares support vector machine
	2.3 Parameter drift and linear system of hydrodynamic derivatives

	3 Results and Discussion
	3.1 Set up for system identification
	3.2 Determination of hydrodynamic derivatives
	3.3 Prediction of maneuvers

	4 Conclusions



