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SYSTEM IDENTIFICATION OF ABKOWITZ MODEL FOR SHIP MANEUVERING
MOTION BASED ON ε-SUPPORT VECTOR REGRESSION

B. Liu∗ Y. Jin A. R. Magee† L. J. Yiew S. Zhang
Technology Centre for Offshore and Marine, Singapore

12 Prince George’s Park, Singapore 118411
Singapore

ABSTRACT
System identification is crucial to predict the maneuverabil-

ity of the ship. In this work, ε-support vector regression (ε-
SVR) is implemented to identify hydrodynamic derivatives of
Abkowitz maneuver model. A proposed technique, batch learn-
ing, is implemented with the addition of Gaussian white noise
to reconstruct the samples and alleviate the parameter drift in
the system identification of the ship maneuvering model. The
predicted results are compared with results obtained from Pla-
nar Motion Mechanism (PMM) test. Standard maneuvers, 35◦

turning circle, 10◦/10◦ and 20◦/20◦ zigzags, are simulated and
compared with the predicted model by ε-SVR. The presented re-
sults show that the proposed batch learning technique with Gaus-
sian white noise is an effective technique, which improves the
accuracy and robustness of ε-SVR in system identification. The
results obtained from the predicted model match well with the
those obtained from PMM results, which shows its excellent gen-
eralization performance. The developed model is applied to un-
derstand control requirements for vessels under different condi-
tions.

Keywords: system identification, Abkowitz model, ε-
support vector regression, parameter drift, batch learning

∗Email: liu bin@tcoms.sg
†Email: allan magee@tcoms.sg

1 INTRODUCTION
The maritime industry is rapidly moving towards remotely

controlled vessels, involving sensing, data-driven machine learn-
ing and autonomous maneuvering to enhance safety and alleviate
the shortage of skilled seamen. For operations in open seas, the
maneuverability of autonomous vessels in winds, waves and cur-
rents have to be better understood to develop more sophisticated
digital twins to train on-board artificial intelligence (AI) control
algorithms. To develop a strategy for autonomous vessels, the
prediction of ship maneuverability is a critical procedure and re-
quired by the International Maritime Organization (IMO) [1] at
the design stage of vessel.

System identification (SI) is an effective data-driven ap-
proach to predict the ship maneuverability, in which the hydro-
dynamic derivatives representing the intrinsic hydrodynamic fea-
tures of a ship are identified. SI is used in engineering sciences
to build mathematical models from data. Generally, there are
two approaches to evaluate the ship maneuvering performances,
experiments or simulations. In experimental methods, the data
used for system identification is obtained from experiments, e.g.,
database, full-scale trials or free-running model tests. On the
other hand, the data used for SI is obtained via mathematical
model or computational fluid dynamics (CFD) simulations.

SI based on mathematical model is a popular and effective
approach to predict the ship maneuverability. However, an accu-
rate prediction also depends upon the the accuracy of the mathe-
matical model representing the vessel. Commonly used ship ma-
neuvering models are Abkowitz maneuver ship model [2], MMG
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model [3] and response model [4]. Among aforementioned ship
maneuvering models, Abkowitz and MMG models are often used
in ship maneuvering community, because the available data pro-
vide a more comprehensive representation of the vessel maneu-
verability. In present investigation, we performed SI based on
data generated from Abkowitz model.

To identify the governing mathematical model from col-
lected data, many SI techniques have been proposed for non-
linear systems over the last decades, e.g., model reference
method [5,6], extended Kalman filter [7,8], least squares [9,10],
maximum likelihood [11], recursive prediction error [12], fre-
quency spectrum analysis [13], particle swarm optimization [14],
genetic algorithm [15], neural networks [16] and support vector
machine (SVM) [17, 18].

Nowadays, neural networks and machine learning tech-
niques attract attention among research communities and exhib-
ited their potentials in numerous applications. For example, the
SVM is a very elegant algorithm among all kernel-learning meth-
ods. It is rooted in statistical learning theory, and provides an
unique and optimal solution with a given data set [19]. Unlike re-
cursive methods, e.g, artificial neural networks, it does not ’trap’
into a local minimum and only converge to the global minimum.
It is well-known for the ’kernel trick’ in which the nonlinear data
set is projected into higher dimensional feature space, where it
may possibly become linear independent. This characteristics
makes it very appealing to problems with strong nonlinearity
and noise. Furthermore, many improvements in classical con-
trol design were achieved by integrating machine learning tech-
niques [20–24]. In present investigation, an ε-SVR is applied to
identify the hydrodynamic derivatives of the Abkowitz model. A
batch learning technique is proposed to work together with Gaus-
sian white noise to alleviate the parameter drift. The investiga-
tions are carried out for a series of maneuvering motion including
a 35◦ turning circle, 10◦/10◦ zigzag and 20◦/20◦ zigzag maneu-
ver. The identified maneuvering derivatives are compared with
PMM measured data.

The remainder of the paper is organized as follows. The
mathematical model of ship maneuver motion is described in
Sect. 2. Subsequently, the formulation of ε-SVR and proposed
batch learning are presented in Sect. 3. Following that, the
methodology adopted in SI using ε-SVR is discussed in detail
in Sect. 4. To alleviate the parameter drift issue in SI, a batch
learning scheme is proposed in Sect. 5. The prediction results
of hydrodynamic derivatives are discussed in Sect. 6. The com-
parison of the trajectories of Abkowitz models based on PMM
results and predicted hydrodynamic derivatives are discussed in
Sect. 7. Finally, concluding remarks are made in Sect. 8.

2 MATHEMATICAL MODEL OF SHIP MANEUVER MO-
TION
The dimensionless Abkowitz maneuver model in the per-

turbed form is presented in Eq. 1. This maneuvering model in-
cludes equations of surge, sway and yaw motions. Two coordi-
nate systems are used in the simulation, the earth-fixed global
inertial frame o0 − x0y0z0 and body-fixed local moving frame
o− xyz. The body-fixed coordinate system is measured on the
calm water free surface level, in which z0-axis points downward.
The x axis of body-fixed coordinate system is pointing at the
forward of mid-ship. The x-y plane of two coordinate systems
coincide. The respective axes of two coordinate systems, e.g., x
axes, are parallel at the initial state.

m′−X ′u̇ 0 0
0 m′−Y ′v̇ m′x′G−Y ′ṙ
0 m′x′G−N′v̇ I′z−N′ṙ

∆u̇′

∆v̇′

∆ṙ′

=

∆F ′1
∆F ′2
∆F ′3

 (1)

The prime denotes corresponding dimensionless quantities,
which are defined as

m′ =
m

1
2 ρL3

X ′u̇ =
Xu̇

1
2 ρL3

Y ′v̇ =
Yv̇

1
2 ρL3

Y ′ṙ =
Yṙ

1
2 ρL4

N′v̇ =
Nv̇

1
2 ρL4

N′ṙ =
Nṙ

1
2 ρL5

I′z =
Iz

1
2 ρL5

∆u̇′ =
∆u̇
U2

L

∆v̇′ =
∆v̇
U2

L

∆ṙ′ =
∆ṙ
(U

L )
2

∆u′ =
∆u
U

∆v′ =
∆v
U

∆r′ =
L∆r
U

∆δ
′ = ∆δ

where m, ρ, L and U are mass of ship, density of fluid, ship
length and ship forward speed. u, v, r = ψ̇, ψ and δ respectively
are longitudinal velocity, transverse velocity, the yaw rate, yaw
angle and rudder angle. The right-hand side terms are defined as

∆F ′1 = X ′u∆u′+X ′uu∆u′2 +X ′uuu∆u′3 +X ′vv∆v′2 +X ′rr∆r′2

+X ′vr∆v′∆r+X ′
δδ

∆δ
′2 +X ′

δδu∆δ
′2

∆u′

+X ′vδ
∆v′∆δ

′+X ′vδu∆v′∆δ
′
∆u′ (2)

∆F ′2 = Y ′v∆v′+Y ′r ∆r′+Y ′vvv∆v′3 +Y ′vvr∆v′2∆r′

+Y ′vu∆v′∆u′+Y ′ru∆r′∆u′+Y ′
δ
∆δ
′+Y ′

δδδ
∆δ
′3

+Y ′
δu∆δ

′
∆u′+Y ′

δuu∆δ
′
∆u′2 +Y ′vδδ

∆v′∆δ
′2

+Y ′vvδ
∆v′2∆δ

′+Y ′0 +Y ′0u∆u′+Y ′0uu∆u′2 (3)

∆F ′3 = N′v∆v′+N′r∆r′+N′vvv∆v′3 +N′vvr∆v′2∆r′

+N′vu∆v′∆u′+N′ru∆r′∆u′+N′
δ
∆δ
′+N′

δδδ
∆δ
′3

+N′
δu∆δ

′
∆u′+N′

δuu∆δ
′
∆u′2 +N′vδδ

∆v′∆δ
′2

+N′vvδ
∆v′2∆δ

′+N′0 +N′0u∆u′+N′0uu∆u′2 (4)
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where X ′u̇, X ′u, Y ′v̇ , Y ′v , N′ṙ, N′r etc. are the dimensionless linear
and nonlinear hydrodynamic derivatives. xG and Iz refer to the
longitudinal coordinate of the center of gravity of ship and the
moment of inertia about z axis respectively. Y ′0 and N′0 denote the
dimensionless hydrodynamic forces in the y direction and the
yaw moment about z axis during the steady forward motion at
constant speed.

The state variables with subscript ”0” refer to the states of
vessel in the steady forward motion condition, e.g., u0 = U and
v0 = r0 = δ0 = u̇0 = v̇0 = ṙ0 = 0. The resultant speed in horizon-
tal plane U =

√
(u0 +∆u)2 + v2. The maximum rate of change

of rudder angle is set at 5◦/s.

3 ε-SVR FORMULATION
The SVM is originally derived in statistical learning theory

and applied in the area of pattern recognition. By introducing ε-
insensitive loss function, SVM is applied in nonlinear regression
estimation, SVR. In SVR, the objective is to define an optimal
hyperplane, Eq. 5, contains as many data as possible within the
insensitive region, based on prescribed parameters.

f (xxx j) = wwwT ·φφφ(xxx j)+b (xxx j ∈ RM,φφφ(xxx j) ∈ RN ,www ∈ RN) (5)

where f (xxx), b and Rn respectively are the estimated scalar out-
put, optimal bias of the system and Euclidean space of dimen-
sion n, e.g., f (xxx) ∈ R0 and b ∈ R0. Here n refers to the dimen-
sion of input sample xxx. xxx and www are vector input and optimal
weight matrix of system respectively. φφφ(xxx) is a linear or non-
linear function and refers to the high-dimensional feature space
RN (N �M), into where the original data xxx is projected. In the
high-dimensional feature space, the original nonlinear data could
be possibly linearized such that linear operations are applicable.
The most attractive characteristics of SVM is that the coordi-
nates in high-dimensional feature space is not explicitly required
for computation.

In SVR, the regression problem is interpreted as an op-
timization problem subject to an objective function in primal
formula, as shown in Eq. 6.

The optimization will minimize:

JJJ(www,ξi,ξ
∗
i ) =

1
2

wwwT ·www+C
N

∑
i=1

(ξi +ξ
∗
i ) (6)

subjected to

yi− (wwwT ·φφφ(xxxi)+b) ≤ ε+ξi ∀i
(wwwT ·φφφ(xxxi)+b)− yi ≤ ε+ξ

∗
i ∀i

ξi,ξ
∗
i ≥ 0 ∀i

where y is the desired responses. ξ and ξ∗ are slack variables,
which define the upper limit of regression errors until which the
constraints are still satisfied. ε is an insensitivity factor. It is
introduced in an ε-insensitivity loss function, Eq. 7.

Lε =

{
0 if | f (xxx)− y| ≤ ε

| f (xxx)− y|− ε otherwise
(7)

The parameter C is a regularization factor to prevent overfitting
(regularization), which defines the trade-off between complexity
of the machine to produce accurate results and the number of
erroneous results, e.g, data outside ε margin.

Based on Karush-Kuhn-Tucker (KKT) conditions, this
objective function in primal formula can be converted into a dual
formula in Eq. 8, such that Eq. 8 is minimized

QQQ(α,α∗) =
1
2

N

∑
i=1

N

∑
j=1

(αi−α
∗
i )(α j−α

∗
j)φφφ

T (xxxi) ·φφφ(xxx j)

+ε

N

∑
i=1

(αi +α
∗
i )−

N

∑
i=1

yi(αi−α
∗
i ) (8)

subjected to

N

∑
i=1

(αi−α
∗
i ) = 0

0≤ αi ≤C ∀i
0≤ α

∗
i ≤C ∀i

where α and α∗ are Lagrange multipliers. By solving for α and
α∗, the optimal hyperplane can be obtained by KKT conditions
as

f (xxx j) =
N

∑
i=1

(αi−α
∗
i )[φφφ

T (xxxi) ·φφφ(xxx j)]+b (9)

where N is the number of support vectors. If a linear kernel is
used, one can obtain www and b as

www =
N

∑
i=1

(αi−α
∗
i )xxx

T
i (10)

b = y j−
N

∑
i=1

(αi−α∗i )xxx
T
i · xxx j− ε · sign(αi−α∗i ) (11)
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FIGURE 1: Comparison of predicted motions with results from
training simulation: (a) 35◦ turning circle; (b) 10◦/10◦ zigzag

where [·] and N refer to the mean value and total number of sup-
port vector. The optimal hyperplane becomes

f (xxx j) = wwwT · xxx j +b (12)

4 METHODOLOGY
There are three sorts of SI approaches, the white-box (mech-

anism) modeling, the grey-box modeling and the black-box mod-
eling. In white-box modeling, the mathematical model is known
and reconstructed based on collected data. In the black-box mod-
eling, only the collected input data is used to predict the maneu-
ver motion, and no mathematical model is built. Whereas, the

Parameter Value

Length overall (Loa) 171.8 (m)

Length between perpendiculars (Lpp) 160.93 (m)

Maximum beam (B) 23.17 (m)

Design draft (T) 8.23 (m)

Design displacement (∇) 18541 (m3)

Design speed (U0) 15.5 (knots)

Maximum rudder rate (δmax) 5◦/s

Dimensionless mass of ship (m′) 7.98×10−3

Dimensionless moment of inertia (I′z) 3.92×10−4

Dimensionless longitudinal coordinate of
ship’s center of gravity (x′G)

−2.3×10−2

TABLE 1: Main data parameters of Mariner class vessel

×10−5 X ′u̇ Y ′v̇ Y ′ṙ N′v̇ N′ṙ

Value -840 -1546 9 23 -83

TABLE 2: Predetermined hydrodynamic derivatives

grey-box modeling is used when the mathematical model is not
fully known and reconstruction is not necessary. Since our ob-
jective to identify the linear and nonlinear hydrodynamic deriva-
tives, the white-box modeling is used.

To estimate the hydrodynamic derivatives using ε-SVR,
the Abkowitz model is re-cast into the following state-space
form [18], as shown in Eq. 13a to 13c.

AAA(k) ·XXXT = L(m′−X ′u̇)u̇(k) (13a)
BBB(k) ·YYY T = L(m′−Y ′v̇)v̇(k)

+ L2(m′x′G−Y ′ṙ )ṙ(k) (13b)
CCC(k) ·NNNT = L(m′x′G−N′v̇)v̇(k)

+ L2(I′z−N′ṙ)ṙ(k) (13c)

where L is the ship length. The acceleration terms, e.g., u̇(k),
v̇(k) and ṙ(k) are approximated with Euler Forward scheme, as

u̇(k) =
∆u(k+1)−∆u(k)

h
(14a)

v̇(k) =
v(k+1)− v(k)

h
(14b)

ṙ(k) =
r(k+1)− r(k)

h
(14c)
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where h and k are the sampling interval and the time step index.
The vectors X , Y and N are dimensionless hydrodynamic deriva-
tives of surge, sway and yaw motions respectively, as shown in
Eq. 15a to 15c.

XXX = [X ′u, X ′uu, X ′uuu, X ′vv, X ′rr, X ′rv, X ′
δδ
, X ′uδδ

, X ′vδ
,

X ′uvδ
] (15a)

YYY = [Y ′0, Y ′u, Y ′uu, Y ′v , Y ′r , Y ′vvv, Y ′vvr, Y ′vu, Y ′ru, Y ′
δ

Y ′
δδδ

, Y ′uδ
, Y ′uuδ

, Y ′vδδ
, Y ′vvδ

] (15b)
NNN = [N′0, N′u, N′uu, N′v, N′r, N′vvv, N′vvr, N′vu, N′ru

N′
δ
, N′

δδδ
, N′uδ

, N′uuδ
, N′vδδ

, N′vvδ
] (15c)

The corresponding dimensional state vectors are defined as

AAA(k) =
[
∆u(k)U(k), ∆u2(k),

∆u3(k)
U(k)

, v2(k), r2(k)L2,

v(k)r(k)L, δ
2(k)U2(k), ∆u(k)δ2(k)U(k),

v(k)δ(k)U(k), ∆u(k)v(k)δ(k)
]

(16a)

BBB(k) = CCC(k) =
[
U2(k), ∆u(k)U(k), ∆u2(k), v(k)U(k),

r(k)U(k)L,
v3(k)
U(k)

,
v2(k)r(k)L

U(k)
, v(k)∆u(k),

r(k)∆u(k)L, δ(k)U2(k), δ
3(k)U2(k)

∆u(k)δ(k)U(k), ∆u2(k)δ(k), v(k)δ2(k)U(k),

v2(k)δ(k)
]

(16b)

Recollecting Eq. 12 and Eq. 15a to Eq. 15c, one can notice
that XXX , YYY and NNN can be obtained by computing www at b ≈ 0. In
the next section, we will discuss a critical issue in the system
identification of a strong nonlinear system, parameter drift.

5 PARAMETER DRIFT AND ε-SVR WITH BATCH
LEARNING
Owing to the intrinsic nature of hydrodynamics of fluid,

strong nonlinearity is common in maneuvering model, e.g., the
XXX , YYY and NNN terms in the Abkowitz model. This strong nonlin-
earity among hydrodynamic derivative terms can lead to a severe
issue, parameter drift, in system identification of a maneuvering
model [25]. In other words, the solution of hydrodynamic deriva-
tives is not unique. When the parameter drift occurs, the obtained
hydrodynamic derivatives could be wrong. These hydrodynamic
derivatives maybe be correctly determined and able to reproduce
the training maneuver, but fails to predict the other maneuvers of
the same vessel.

Many authors [17, 18, 26] have successfully reduced the pa-
rameter drift by adding (zero-mean) Gaussian white noise into
the sample data. The Gaussian white noise serves as a source

of perturbations to the maneuver parameters, e.g., rudder angle.
Those perturbations make the maneuver parameter effective in
the dynamics of vessel and identifiable by SVR. Recently new
measures are proposed [25] to minimize the parameter drift, e.g,
reconstruction of sample data and modification of the maneuver
model. In present investigation, we propose an improvement to
reduce the parameter drift further by combining Gaussian white
noise and a batch learning scheme, in which we allow the ε-SVR
to learn two different maneuvers of the same vessel. By learn-
ing two different maneuvers together, our objective is to reduce
the linear dependency of training data matrix in the sample. The
detailed modifications are shown below.

To train the SVR with the sample data, the samples at dif-
ferent time steps are projected into feature space with φφφ function
and arranged into a matrix form, as shown in Eq. 17a to 17c.

AAA = [AAA(1),AAA(2), ...,AAA(l)]T (17a)
BBB = [BBB(1),BBB(2), ...,BBB(l)]T (17b)
CCC = [CCC(1),CCC(2), ...,CCC(l)]T (17c)

where l is the total number of sampling data in the time history.
Parameter drift occurs due to the dynamic cancellation of linear
hydrodynamic derivatives and multicolinearity of nonlinear hy-
drodynamic derivatives [25]. To alleviate the linear dependency
between each column in matrices AAA, BBB and CCC respectively, sam-
ple data of two maneuvers are consolidated. Based on Eq. 13a
to 13c, the Abkowitz model is re-cast as,

(AAA1 +AAA2) ·XXXT = L(m′−X ′u̇)(u̇uu1 + u̇uu2) (18a)
(BBB1 +BBB2) ·YYY T = L(m′−Y ′v̇)(v̇vv1 + v̇vv2)

+L2(m′x′G−Y ′ṙ )(ṙrr1 + ṙrr2) (18b)
(CCC1 +CCC2) ·NNNT = L(m′x′G−N′v̇)(v̇vv1 + v̇vv2)

+L2(I′z−N′ṙ)(ṙrr1 + ṙrr2) (18c)

where subscript ”1” and ”2” refer to different maneuvers. Here
we assume that hydrodynamic derivatives XXX , YYY and NNN are con-
stant among different maneuvers. Ideally, the more different two
maneuvers are, e.g., turning circle and zigzag, the wider varia-
tions of speeds, drift angle, rudder angles and rotation rates are.
As a result, the linear dependency between columns in AAA1 +AAA2,
BBB1 +BBB2 and CCC1 +CCC2 are reduced. In the next section, the per-
formance of proposed batch learning together with addition of
Gaussian white noise is evaluated by comparison with PMM and
literature results.

6 PREDICTED RESULTS
To evaluate the performance of the proposed ε-SVR with

batch learning, a mariner class vessel [27] is taken as an example.
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Tab. 1 shows the main particulars of this vessel, in which Lpp,
U0, σmax, m′, I′z and x′G are used for simulation and prediction.
The predetermined dimensionless hydrodynamic derivatives are
summarized in Tab. 2.

The 35◦ turning circle and 10◦/10◦ zigzag maneuvers are
simulated for training of ε-SVR with batch learning. The hydro-
dynamic derivatives taken from PMM results [27] for simulation
are summarized in Tab. 3, 4 and 5. The surge speed u, the sway
speed v, the yaw rate r, the heading angle ϕ and the resultant
speed U are collected based on the simulations. The simula-
tion sampling interval is 1 s, and 400 samples are collected for
training of ε-SVR. In SVM/SVR, we would like to achieve two
things, correct classification/regression (high accuracy, low value
of ε) and large margin (good generalization, low value of C).
However, most of the time, we cannot achieve both. In our case,
we aim at obtaining an excellent accuracy. Therefore, we choose
a very low ε value, 1×10−16 and very high C value 1×106.

Two configurations are taken into consideration in Tab. 3, 4
and 5, (1) training with Gaussian white noise (G); (2) train-
ing with Gaussian white noise and proposed batching learning
(G+B). The obtained results are compared with literature and
PMM results, as summarized in Tab. 3, 4 and 5. The discrepan-
cies with the PMM results are shown with percentage in paren-
theses.

It can be observed that the prediction of hydrodynamic
derivatives for surge motion XXX is very stable and accurate among
different methods in Tab. 3. On the other hand, the discrepan-
cies between predicted results and PMM results are prominent.
It is noteworthy that our results trained with only Gaussian white
noise fails at the same hydrodynamic derivatives of sway and
yaw motions to Wang et al. (2015) [18]. It is reasonable, since
we applied a similar technique. However, because the results are
sensitive to the magnitude of Gaussian white noise, training ma-
neuver and temporal integration scheme, the level of discrepan-
cies is different. The applied forward Euler temporal integration
scheme can introduce large numerical errors at a relative large
time step, which takes the similar role to the Gaussian white
noise. Therefore, we presented the most accurate predictions
with Gaussian white noise (Present (G)) at different settings, e.g.,
time step, sampling rate, sample size and noise level. We sub-
sequently use these results to compare with the results obtained
from the proposed batching scheme together with Gaussian white
noise.

When Gaussian white noise and proposed batch learning
scheme are used together to train ε-SVR (Present (G+B)), the
improvement in accuracy and robustness of prediction of hydro-
dynamic derivatives are significant. In total, there are 7 hydrody-
namic derivatives which are different from PMM results, com-
pared with prediction with Gaussian white noise, where at least
24 erroneous hydrodynamic derivatives are observed, as shown
in Tab. 3, 4 and 5. The accuracy is generally controlled around
1%, except one hydrodynamic derivative N′vδδ

. Furthermore, the

results presented for batch learning are randomly chosen, instead
of the best among the available results. The accuracy and ro-
bustness of proposed batch learning with Gaussian white noise
remains good within a relatively wide range of parametric space,
e.g., sampling rate, sample size, different maneuvers and noise
level.

7 DISCUSSION OF VERIFICATION RESULTS
In this section, the trajectories of different maneuvers based

on PMM results and estimated hydrodynamic derivatives are
compared. The objective is to evaluate the generalization of the
mathematical model based on estimated hydrodynamic deriva-
tives in Tab. 3, 4 and 5.

The comparisons of vessel’s motion between the predicted
motions and the results from training simulation are shown in
Fig. 1. In Fig. 1a, the rudder is turned 35◦. The predicted motion
matches very well with the training result. On the other hand,
the small discrepancy between the predicted motion and train-
ing results of 10◦/10◦ zigzag in Fig. 1b starts growing as time
goes on. Although the predicted hydrodynamic derivatives using
ε-SVR with batch learning are very close to PMM results, the
accumulation of errors in long-time simulation is inevitable.

The comparisons between the predicted motions and the re-
sults from test simulations, 10◦ turning circle and 20◦/20◦ zigzag
are also conducted, as shown in Fig. 2 and 3. The sampling
rate of test simulations is identical to training simulations. These
comparisons show that the proposed ε-SVR with batching learn-
ing is robust and possess good generalization performance. It is
capable of predicting the underlining Abkowitz maneuver model
to reproduce simulated results.

8 CONCLUSION REMARK
In present investigation, An ε-SVR with batch learning

was proposed to identify the hydrodynamic derivatives of an
Abkowitz model, based on numerical results from simulations. It
shown that the implemented system identification technique pos-
sesses following characteristics: (a) excellent accuracy in predic-
tion of hydrodynamic derivatives; (b) reduce the number of er-
roneous hydrodynamic derivatives compared with PMM results;
(c) an effective complementary technique together with the addi-
tion of Gaussian white noise to alleviate the parameter drift; (d)
excellent generalization performance through learning multiple
maneuvers simultaneously.
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FIGURE 2: Comparison of predicted motions with results from test simulation, 10◦ turning circle: (a) u vs. t; (b) U vs. t; (c) v vs. t; (d) x
vs. y; (e) r vs. t; (f) ψ vs. t
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FIGURE 3: Comparison of predicted motions with results from test simulation, 20◦/20◦ zigzag: (a) u vs. t; (b) U vs. t; (c) v vs. t; (d) x
vs. y; (e) r vs. t; (f) ψ vs. t
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×10−5 X ′u X ′uu X ′uuu X ′vv X ′rr X ′
δδ

X ′
δδu X ′vr X ′vδ

X ′vδu

PMM [27] -184 -110 -215 -899 18 -95 -190 798 93 93

Wang et al.(2015) [18] -184 -111
(0.9%)

-217
(0.9%)

-900
(0.1%)

18 -95 -190 798 93 93

Present (G) -184 -110 -215 -899 18 -95 -190 798 93 93

Present (G+B) -184 -110 -215 -899 18 -95 -190 798 93 93

TABLE 3: Dimensionless hydrodynamic derivatives of surge motion: G and G+B respectively denote Gaussian white noise and Gaussian
white noise with batch learning

×10−5 Y ′v Y ′r Y ′vvv Y ′vvr Y ′vu Y ′ru Y ′
δ

Y ′
δδδ

Y ′uδ

PMM [27] -1160 -499 -8078 15356 -1160 -499 278 -90 556

Wang et al.(2015) [18] -1160 -499 -7950
(1.6%)

15413
(0.04%)

1133
(2.3%)

-485
(2.8%)

278 -93
(3.3%)

562
(1.1%)

Present (G) -1160 -499 -8076
(0.03%)

15361
(0.03%)

-1143
(1.5%)

-494
(1%)

278 -90 557
(0.2%)

Present (G+B) -1160 -499 -8080
(0.03%)

15354
(0.01%)

-1160 -499 278 -90 556

×10−5 Y ′uuδ
Y ′vδδ

Y ′vvδ
Y ′0 Y ′0u Y ′0uu

PMM [27] 278 -4 1190 -4 -8 -4

Wang et al.(2015) [18] 294
(5.8%)

-3
(25%)

1209
(1.6%)

-3
(25%)

-10
(25%)

-5
(25%)

Present (G) 280
(0.7%)

-5
(25%)

1198
(0.7%)

-6
(50%)

-6
(25%)

-12
(200%)

Present (G+B) 279
(0.4%)

-4 1188
(0.2%)

-4 -8 -4

TABLE 4: Dimensionless hydrodynamic derivatives of sway motion: G and G+B respectively denote Gaussian white noise and Gaussian
white noise with batch learning

Strategic Research Programme through Technology Centre for
Offshore and Marine, Singapore (TCOMS)
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