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A B S T R A C T   

The two-degree-of-freedom (2-DOF) vortex-induced vibration (VIV) of a circular cylinder in oscillatory flow is 
numerically investigated in this work. The wake flow and vibration response are examined at a Reynolds number 
of 150 and three Keulegan-Carpenter numbers of 20, 30, and 50 in the range of reduced velocity from 3 to 16. It 
is found that the root-mean-squared lift coefficient first increases and then decreases, and tends to be stable with 
the increase of the reduced velocity. The minimum averaged pressure coefficients at different KCs number 
decrease with the increase of reduced velocity. The time-averaged pressure coefficient is 0 at the front and rear 
stagnation points, presenting V-shaped at 0 ≤ α ≤ 180◦. The evolution of vortices is associated with the vibration 
response of the cylinder as well as the oscillatory flow. The vortices in turn influence the subsequent vibration of 
the cylinder, contributing to the multiple frequencies. The streamwise dominant frequency is always equal to the 
oscillatory flow frequency, despite the existence of multiple frequencies. In contrast, the transverse vibration 
frequency follows closely the natural frequency of the cylinder.   

1. Introduction 

In offshore engineering, the wave-induced vibration of marine 
structures is typically modelled by subjecting the structure to an oscil
latory flow. This approach simulates the periodic fluctuation in flow 
velocity and direction characteristic of waves. The study of oscillatory 
flow around elastically mounted cylinders is crucial for understanding 
and modeling a range of problems, from coastal engineering flows to 
large-scale oceanographic flows (An et al., 2015). Such analyses are 
pivotal in exploring the dynamics of cylindrical structures like Floating 
Production Storage and Offloading (FPSO) units, marine risers, etc. 
Vortex shedding in the wake of a circular cylinder in steady flow is 
observed when the Reynolds number (Re = UmaxD/v, where Umax is the 
max of fluid velocity, D is the diameter of the cylinder and v is the ki
nematic viscosity of the fluid.) surpasses approximately 47 (Henderson, 
1997; Jiang et al., 2016). In particular, for the oscillatory flow around a 
cylinder, a dimensionless parameter, Keulegan–Carpenter (KC =

UmaxT/D, where T is the period of the flow oscillation) number, is 
employed to characterize the oscillatory feature. 

As early as 1979, Bearman and Currier, as the pioneers in the 
research of fluid-structure interaction, conducted intensive research on 

the vortex-induced vibration (VIV) (Bearman and Currie, 1979). VIV is 
commonly the cause of significant delays of construction and failures in 
offshore structures. The VIV motions of towed and moored underwater 
platforms degrade the data-gathering performance of these systems. The 
practical significance of VIV has led to extensive fundamental studies. 
Many of those were discussed in the comprehensive reviews of Feng 
(1968), Williamson (1996), Williamson and Govardhan (2004), and 
Williamson and Govardhan (2008). Feng (1968) documented classic 
measurements of the VIV response of an elastically mounted cylinder. 
There are two amplitude branches, namely the "initial" branch and the 
"lower" branch, with a hysteretic transition between them. Khalak and 
Williamson (1997) extended that free vibration at low mass and 
damping is associated with the existence of an "upper" branch of high 
amplitude response, which appears between the "initial" and "lower" 
branches. The phenomenon of lock-in or synchronization (Williamson 
and Govardhan, 2004) traditionally means that the ratio f * = f/fn re
mains close to unity, where f is the vibration frequency and fn is the 
natural frequency. The lock-in region corresponds to a large amplitude 
of the cylinder. The vortex shedding per cycle comprises single vortex 
(S) and vortex pairs (P), yielding patterns such as 2S (two single vortices 
are shed per cycle), 2P (two pairs of vortices are shed per cycle), and P +
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S (the cylinder sheds a pair of vortices and a single vortex per cycle) 
modes. Through the smoke visualizations, Brika and Laneville (1999) 
found that the "initial" and "lower" branches correspond to the 2S and 2P 
modes, respectively. Williamson and Govardhan summarized the vortex 
modes as 2S, 2P, 2T (three vortices in the same sign are shed in every 
half-period) and C(2S) (two vortices in the same sign but in different 
sizes are shed on both sides of the cylinder per cycle) modes (Williamson 
and Govardhan, 2004). New wake modes are subsequently found behind 
the oscillating structure, such as P + S (Singh and Mittal, 2005) and 
some combined ones. 

In the actual marine environment, the relative oscillatory flow be
tween the riser and the fluid driven by the wave and the top platform 
motion also leads to VIV. Under oscillatory flow conditions, the flow 
around the cylinder is very complicated. For different KC and Re, the 
vortical structure and vibration mechanism are different. Sarpkaya 
(1986) experimentally studied the flow around a cylinder in oscillatory 
flow. For a single cylinder at β = 730 (where β is the Stokes number, 
defined as β = Re/KC), the number of vortices shed from both sides of 

the cylinder increases with the increase of KC number. Five vortex 
patterns were observed: attached vortex pair mode (0 < KC < 7), one 
vortex pair mode (7 < KC < 15), two vortex pairs mode (15 < KC < 24), 
three vortex pairs mode (24 < KC < 32), and four vortex pairs mode (32 
< KC < 40). Sarpkaya also found that when KC < 1.1, no vortex shed 
occurred, presenting the two-dimensional characteristics. When 1.1 <
KC < 1.6, the vortex shedding occurs (Honji, 1981). When 1.6 < KC < 4, 
a pair of symmetric vortices are generated in half a period of oscillation. 
However, when 4 < KC < 7, the turbulence phenomenon is intensified in 
the boundary layer, and a pair of asymmetric vortices are generated in 
half a period. When the KC number continues increasing, the number of 
vortices in a period increases. Subsequently, Tatsuno and Bearman 
(1990) conducted an experimental study on the visualization of flow 
around a cylinder in oscillatory flow (5 < β < 160, 1.6 < KC < 15) and 
identified eight different regimes. In addition, Sumer and Fredsøe 
(1988), and Kozakiewicz et al. (1992, 1994, 1997) studied the charac
teristics of VIV of cylinder and riser in oscillatory flow via experimental 
methods, and found an intermittent transition of vibration mode. At a 
given KC number, the vibration of the cylinder changes with the ve
locity, and a prominent feature of the oscillatory flow is the co-existence 
of multiple peaks. With the increase of the KC number, the number of 
vorticity and the number of response peaks in a period increase, and the 
relevant parameters increase when the KC number is in the lock-in re
gion. The position of the vortex shedding distance from the cylinder is 
affected by the vibration frequency of the cylinder. 

The topic of oscillatory flow around a circular cylinder can be 
examined through different setups of coordinate systems. In most of the 
experiments, the cylinder was under an oscillatory motion in still water, 
where the coordinate system was fixed with far-field (Elston et al., 2006; 
Lam et al., 2010; Williamson, 1985), the Eulerian description. In nu
merical simulations, it is more convenient to simulate an oscillating flow 
past a stationary cylinder (Justesen, 1991; Obasaju et al., 1988; Tatsuno 
and Bearman, 1990, etc.) instead, where the coordinate system was 
fixed with the cylinder, the Lagrangian description. In recent years, a lot 
of studies on mooring systems have been carried out by establishing a 
rigid cylinder model for experiments or numerical simulation. Consid
ering the feasibility of the study, the six degrees of freedom of the 

Fig. 1. Sketch of vortex induced vibration of a circular cylinder in oscilla
tory flow. 

Fig. 2. Two-dimensional computational mesh near the cylinder.  

Table 1 
Results for mesh dependency validation at Re = 150, m* = 2, Ur = 5, ζ = 0, and Δr = 0.001.  

Mesh Element Rr Nc CD,mean CL,rms St Ax,max Ay,max f * 

M1 39169 1.1 25 0.4051 0.1789 0.2001 0.5159 0.9133 0.2001 
M2 62455 1.07 30 0.4300 (6.15 %) 0.1814 (1.40 %) 0.2001 (0.00 %) 0.5438 (5.40 %) 0.9131 (0.02 %) 0.2001 (0.00 %) 
M3 134317 1.05 40 0.4269 (− 0.72%) 0.1807 (− 0.51 %) 0.2001 (0.00 %) 0.5408 (− 0.55 %) 0.9270 (1.50 %) 0.2000 (0.05 %)  
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Fig. 3. The comparison in the steady flow (a) the comparison of the amplitude of two-degree-of-freedom (2-DOF) VIVs with the results in the literature; (b) the 
comparison of the vortex shedding with that reported in Wang et al. (2019). 

Fig. 4. The comparison of the maximum amplitudes with reported data: (a) in the streamwise direction; (b) in the transverse direction.  
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moving cylinder are simplified into one (transverse vibration) or two 
degrees of freedom (streamwise and transverse vibration). Physical 
model experiments and numerical simulation experiments of 
vortex-induced vibration of rigid cylinders can be divided into the 
following two categories: (1) Forced oscillation: vibration according to a 
specific function trajectory, the vibration trajectory is a mathematical 
function set by humans, is a specific vibration trajectory, will not change 
with the actual force of the cylinder, and the driving force is the external 
drive. (2) Self-excited oscillation: the oscillation of the cylinder is caused 
by the force generated when the fluid flows around, and the spontaneous 
motion generated under the excitation of the force. Self-excited vibra
tion is a kind of spontaneous motion under the action of force, and the 
motion path is not artificially set in advance but is an autonomous 
movement under the action of fluid force. (3) Free vibration: The vi
bration in which the system is no longer stimulated after the initial 
excitation. (4) Parametric vibration: Vibration induced by changes in 
the system’s parameters. Self-excited vibration is more intuitive than 
forced vibration, in the past few decades, the motion and force of 

self-excited cylinders have been studied by many researchers. Sarpkaya 
(2004) described in his study that studying vortex-induced vibration to 
predict the motion and dynamics of self-excited oscillation based on the 
physical model of forced oscillation or numerical simulations. 
Conversely, the physical model of self-excited oscillation or numerical 
simulations can be used to predict the forced oscillation of the lift, drag, 
additional mass force coefficient, etc. Up to now, the primary focus of 
advanced experimental techniques is on the fluid-structure coupling 
between rigid cylinders and three-dimensional separation flows. In the 
experiment, the original six degrees of freedom of movement of the rigid 
cylinder was also simplified to one degree of freedom, namely the most 
concerned lateral movement. Both self-excited oscillation and forced 
oscillation experiments have their significance. The researchers can 
choose different experimental methods according to the objectives of 
their study. Nowadays, a lot of scientific research work has been carried 
out on the forced vibration and vortex-induced vibration of cylinders. 
The review papers published by Pan et al. (2005) provide a good sum
mary of the studies in the past. In addition, studies on the correlation 
between forced vibration and vortex-induced vibration can be found in 
Morse and Williamson (2006), Hover et al. (2004), and Carberry et al. 
(2004, 2005). The experiments of forced vibration are of great signifi
cance. The experiments of forced vibration pay more attention to the 
energy transfer between fluid and structure motion. Among them, 
Staubli (1983), Moe and Wu (1990), and Gopalkrishnan (1993) have 
attracted more attention. Among them, Sarpkaya decomposed the fluid 
force suffered by the cylinder in forced oscillation into components that 
are in phase with the cylinder oscillation velocity, that is, the drag force 
component, and the inertial force component that is in phase with the 
oscillation acceleration. After this decomposition, although it is not as 
intuitive as that considered in the self-excited oscillation experiment, it 
clearly expresses the role of vibration frequency in energy transfer. 
Patrikalakis and Chryssostomidis (1986) give the lift response of a cyl
inder under shear flow in one direction. The data from Gopalkrishnan’s 
experiment were adopted by the lift model of vortex-excited vibration 
software Shear7. 

It was noticed that there are very limited studies on the vibration of 
cylinders in an oscillating flow. Kozaiewicz et al. (1994, 1997) con
ducted an experimental study of 1-DoF (degree of freedom) vibration of 
a cylinder in the oscillating flow direction for 5＜KC＜100. It was found 
that the response mode under constant KC number changes with the 
reduced velocity. One of the typical characteristics of the response in an 
oscillating flow is that the frequency of the vibration is a multiple of the 
frequency of the oscillating flow. Sumer et al. (1994) studied the 
streamwise correlation of a vibrating cylinder in an oscillating flow, and 
the large amplitude of oscillation at the resonance has a significant effect 
on the flow pattern and the hydrodynamic force exerted on the cylinder. 
Anagnostopoulos and Iliadis (1998) numerically simulated the direc
tional vibration of a cylinder in an oscillating flow with Re = 200 and KC 
number between 2 and 20. It is found that the large oscillation ampli
tude at the resonance has a great influence on the flow pattern and the 
hydrodynamic force exerted on the cylinder. Zhao et al. (2012, 2013) 
conducted study on 1-DoF VIV of a cylinder in the transverse direction of 
oscillating flow and showed that the numerical model based on the 
Reynolds-averaged Navier-Stokes equations can well predict the 
vortex-induced vibration patterns observed in laboratory. Lipsett and 
Williamson (1994) conducted laboratory tests in a U-tube to study the 
XY trajectory of vibrations by changing the KC number from 2 to 60 and 
the ratio of the natural frequency in water to the U-tube oscillation 
frequency from 1 to 9. Zhao (2013) also conducted a 2dof numerical 
study on cylindrical vortex-induced vibration affected by oscillating 
flow. It can be observed that as the KC number increases, the vibration 
becomes irregular and chaotic as the vibration amplitude increases. 

Overall, it was found that most studies on oscillating flows focused 
on high Reynolds number, and few studies on low Reynolds number 
oscillating flows. and the description of the outcome after vortex shed
ding is lacking. In this study, the two-degree-of-freedom vortex-induced 

Fig. 5. The variation of root-mean-squared (RMS) drag coefficient with 
reduced velocity. 

Fig. 6. The variation of root-mean-squared (RMS) lift coefficient with 
reduced velocity. 
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vibration response of a cylinder in oscillating flow at low Re was 
numerically investigated, including vibration displacement in two di
rections of the cylinder, lift and drag force, and vortex shedding of the 
cylinder wake, etc., and the reduced velocity Ur from 3 to 16, Re = 150, 
m* = 10, and damping ratio equal to zero. However, in practical engi
neering, the period of waves usually ranges from 0.5 to 25 s with flow 
velocity in the range of 0.5–1.5 m/s, and the size of marine structures 

varies from as small as 0.2 m (e.g. subsea pipelines) to as large as 90 m 
(e.g. floating production storage and offloading, FPSO). The value of KC 
roughly ranges from 0.003 to 200. Therefore, in this work, three typical 
KC values (KC = 20, 30, and 50) are selected within the range. The 
relationship between the cylinder amplitude and hydrodynamic coeffi
cient and the reduced velocity under different KCs number was studied, 
and the relationship between vibration frequency and flow mode was 

Fig. 7. The distribution of the mean pressure coefficient (CP,mean) around the cylinder: (a) comparison of different KCs number at the constant reduced velocity; (b) 
comparison between different reduced velocity at the constant KC number. 

Fig. 8. Pressure coefficient contours at two moments when KC = 20 and Ur = 3: (a) t = t0+0.25T; (b) t = t0+0.75T.  
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studied by observing the eddy current movement around the cylinder. 
The structure of this article is arranged as follows. In Section 2, the 

governing equations and numerical models used in this study are pre
sented, and the numerical model is validated by comparing the nu
merical results with the experimental test results. In Section 3, three KCs 
number KC = 20, 30, 50, and Ur = 3–16 are simulated to discuss the 
relationship between the vibration response of the reduction speed to 
the cylinder and the hydrodynamic system values for different KCs 
number. Conclusions are drawn in section 4. 

2. Numerical method 

2.1. Governing equations 

Two-dimensional numerical simulations were executed using the 
open-source Computational-Fluid-Dynamics (CFD) solver OpenFOAM 
(www.openfoam.org), which is composed of C++ libraries solving the 
continuity and incompressible Navier-Stokes (NS) equations (1) and (2) 

directly by the finite-volume method (FVM) and the Pressure Implicit 
with Splitting of Operators (PISO) algorithm, 

∂ui

∂xi
=0 (1)  

∂ui

∂t
+ uj

∂ui

∂xj
= −

1
ρ

∂p
∂xi

+ υ ∂2ui

∂xixj
(2)  

where (xi, xj) = (x, y) are the Cartesian coordinates in the streamwise 
and transverse directions, respectively, ui is the velocity component in 
the xi direction, t is time, p is pressure, ρ and υ are the density and ki
nematic viscosity of the fluid, respectively. The governing equations for 
the structure are given by: 

MẌ+CẊ + KX = FD(t) (3)  

MŸ +CẎ + KY = FL(t) (4)  

where M, C and K are the mass, damping and stiffness of each cylinder, 
respectively, Ÿ, Ẏ and Y represent the transverse acceleration, velocity 
and displacement, respectively; Ẍ, Ẋ and X represent the streamwise 
acceleration, velocity and displacement, respectively; FL, FD are the lift 
force and the drag force acting on the cylinder, respectively. 

Once the flow field is obtained, drag and lift coefficients can be 
defined as: 

CD =
2FD

ρU2D
(5)  

CL =
2FL

ρU2D
(6)  

where CD and CL are the drag and lift coefficients, respectively. 

2.2. Problem description and boundary conditions 

Fig. 1 shows a sketch of the 2dof VIV of a circular cylinder in the 
oscillatory flow. The fluid velocity of the sinusoidally oscillatory flow 
u(t) is expressed as: 

u(t)=Um sin(2πt /T) (7)  

where t is the time and T is the period of oscillation. The non- 
dimensional parameters that influence the VIV are: (1) the mass ratio 
m*=m/md, where m is the mass of the cylinder and md is the mass of the 
displaced fluid (md = ρπD2L/4); (2) the structural damping ratio ζ =

C/
(
2
̅̅̅̅̅̅̅
Km

√ )
, where C is the structural damping constant and K is the 

stiffness of the spring; (3) the reduced velocity Ur = Um/fnw D, where fnw 
is the natural frequency of the structure measured in still water, where 
fnw = (1 /2π)

̅̅̅̅̅̅̅̅̅̅
K/m

√
and K is the stiffness of spring; (4) the KC number 

KC = Um T/D and (5) the Reynolds number Re = Um D/ν, where ν is the 
kinematic viscosity of the fluid. 

2.3. Spatial and temporal convergence analysis 

The computational domain was structured using Gmsh with a refined 
grid distribution around the circular cylinder, as depicted in Fig. 2. The 
smallest normalized grid height near the cylinder surface is set to 
0.001D. The grid refinement was performed within a circular region 
encompassing the cylinder to ensure accurate capture of the wake and 
vortex street behind the cylinder. Fig. 2 shows the close look of the mesh 
around a cylinder. The structured mesh near the cylinder’s surface has 
been adequately refined to capture the boundary layer. The height of the 
first layer close to the cylinder surface is 0.001D (the smallest element 
size), and the time step dt = 0.001 is used for all simulations in this 
article. 

Fig. 9. The variation of root-mean-squared (RMS) amplitude in the streamwise 
direction with the reduced velocity. 

Fig. 10. The variation of root-mean-squared (RMS) transverse amplitudes with 
reduced velocity. 

H. Zhu et al.                                                                                                                                                                                                                                     
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Fig. 11. Comparison of amplitude frequency and natural frequency of different KCs number: (a) in the streamwise direction; (b) in the transverse direction.  

H. Zhu et al.                                                                                                                                                                                                                                     



Ocean Engineering 310 (2024) 118666

8

The mesh convergence analysis was conducted for the cylinder in 
steady flow when Ur = 5. As is shown in Table 1, it is evident that the 
error of the hydrodynamic and vibration response is within 5% for the 
mesh resolution M2, where Element, Rr, Nc, CD,mean, CL,rms, St, Ax,max, Ay, 

max, are the total node number of the mesh, the radial growth rate, the 
number of circumferential nodes around the cylinder, the mean drag 
coefficient, root-mean-square of the lift coefficient, the Strouhal num
ber, the maximum streamwise amplitude, the maximum transverse 
amplitude, and the frequency ratio (f * = fw/fn, where fw is the oscillatory 
flow frequency and fn is the natural frequency of the cylinder), respec
tively, and Δr is the minimum non-dimensional mesh size. Hence, M2 is 
used for all simulations in this article. Note that the simulation of each 
case is carried out until enough periodic results are obtained after a 
statistically stable flow state has been reached. 

2.4. Code validation 

Figs. 3 and 4 show the two-degree-of-freedom steady flow verifica
tion, and the maximum amplitude verification of oscillating flow 

direction, respectively. Fig. 3 (a) is compared with Singh and Mittal 
(2005), Chung (2016), and Wang et al. (2019) respectively to compare 
the changes of the maximum transverse amplitude with the reduced 
velocity and the changes of the root-mean-squared (RMS) value of the 
streamwise amplitude with the reduced velocity. As shown in Fig. 3, the 
curve obtained by this model is similar to the corresponding curve in 
previous literature, and two peaks of Ax,rms/D curves similar to those of 
predecessors are also found in this work. The Ay,max/D in this paper are 
in good agreement with the results obtained by Chung (2016) and Wang 
et al. (2019). Fig. 3 (b) is the vorticity contours in the wake of a circular 
cylinder in one vortex shedding cycle are compared with that observed 
by Wang et al. (2019). It can be seen from Fig. 4 that the vortex shedding 
mode is in consistent with the reported literature, presenting the clas
sical 2S mode. The difference in the transverse distance between vortices 
is possibly associated with the display range of vorticity contours, since 
the vorticity range is not provided in Wang et al. (2019). 

Fig. 4 shows the comparison between the maximum streamwise 
amplitude calculated by the current model and the maximum stream
wise direction amplitude calculated by the model used by Taheri et al. 

Fig. 12. Comparison of wavelet spectrum in streamwise direction with different KCs number and reduced velocity.  

Fig. 13. Comparison of wavelet spectrum in the transverse direction with different KCs number and reduced velocity.  
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(2020), the normalized velocity is defined as f * = Ur/KC. Fig. 4 com
pares the maximum amplitudes in both streamwise and transverse di
rections. It is seen that the calculated results agree well with the reported 
data. Each set of calculations by Taheri et al. (2022) is for single degree 
of freedom, while the current validation is for two degrees of freedom. 
Thus, there are differences in some reduced velocities. 

3. Results and discussion 

3.1. Hydrodynamic coefficients 

Figs. 5 and 6 show the variation of the root-mean-square (RMS) force 
coefficient with the reduced velocity. For each KC number, the varia
tions of the RMS streamwise and the RMS transverse force coefficients 
with the reduced velocity are characterized by rapidly increasing to a 
peak followed by gradually decreasing and then stable with the increase 
of reduced velocity. The variation of the root mean square (RMS) force 
coefficient is similar to the changes of the transverse amplitude with the 
reduced velocity. 

As depicted in Fig. 5, the root-mean-square value of the drag coef
ficient gradually increases when 3 < Ur < 15. Conversely, it decreases 
when 5 < Ur < 8, and tends to stabilize when 8 < Ur < 16. Moreover, the 
stability of the curve improves with the KC number increases. Addi
tionally, CD,rms decrease progressively with increasing KC number at a 
constant reduced velocity, due to a longer oscillation period resulting in 
a greater time required for velocity direction changes. 

As shown in Fig. 6, the root-mean-square value of the lift coefficient 
gradually increases when Ur = 3 and Ur = 4, and the root-mean-square 
value of the lift coefficient decreases in proportion when 5 < Ur < 7, 
while the root-mean-square value of the lift coefficient increases slightly 
when 8 < Ur < 16, and with the decrease of KC number, the root-mean- 
square value of the lift coefficient increases more and more significantly. 
At the same reduced velocity, the root-mean-square value of the lift 
coefficient also decreases with the increase of KC number, and because 
the oscillation period becomes larger, the time required to change the 
velocity direction becomes larger, resulting in the root-mean-square 
value of the drag coefficient decreasees with the increase of KC num
ber at the constant reduced velocity. 

3.2. Pressure coefficients distribution 

Figs. 7 and 8 show the circumferential distribution curve of the 
averaged pressure coefficient for typical groups, and the circumferential 
distribution diagram of the instantaneous pressure coefficient at four 
moments in half a cycle before and after the velocity direction change 
when KC = 20 and Ur = 3, respectively. 

The time-averaged pressure is calculated with more than 100 oscil
lating flow cycles, and then the time-averaged pressure coefficient is 
obtained by: 

CP,mean =
Pmean − P∞

1
2 ρU2

m
(8)  

where Pmean is the time-mean pressure, and Pꝏ is the independent static 
pressure at the inlet. Fig. 7(a) shows the time-averaged pressure coef
ficient around the cylinder at different KCs number with a given reduced 
velocity. 

Fig. 7 (a) shows the comparison between the mean pressure co
efficients of oscillating and steady flows with different KCs number at 
the constant reduced velocity. The minimum averaged pressure co
efficients of different KCs number will continue to decrease with the 
increase of reduced velocity, and the greater the reduced velocity, the 
more obvious the difference between the averaged pressure coefficients 
of the different KCs number. Due to the separation of the shear layer, the 
averaged pressure curve of each stage presents a V-shape in the range of 
0≤α ≤ 180◦. The mean circumferential pressure distribution of oscil
lating flow is obviously different from that of stable flow, because of the 
change of flow direction. Fig. 7 (b) shows the comparison between the 
averaged pressure coefficients of different reduced velocity in the con
stant KC number. It can be seen that the minimum value of the averaged 
pressure coefficient will gradually decrease with the increase of the 
reduced velocity, and the difference between the averaged pressure 
coefficient values of different reduced velocity will become smaller and 

Fig. 14. Dependence of the maximum KC number on the reduced velocity.  

Fig. 15. The division of displacement trajectory pattern in the case considered in the current work: (a) displacement trajectory partition; (b) five typical shapes of 
trajectories. 
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smaller, with the increase of the KC number. 
In Fig. 8, the red arrow outward represents the negative pressure 

zone, and the black arrow inward represents the positive pressure zone. 
The pressure coefficient in half period of the oscillating flow is plotted in 
Fig. 8. The distribution of positive and negative pressure presents a 
center symmetry with the velocity change. From Fig. 8 (a) and Fig. 8 (b), 
it can be seen that the positive and negative pressure regions appearing 
in front and rear of the cylinder are approximately symmetrically 
distributed. With the switching of flow velocity direction, the positive 
and negative pressure regions on both sides of the cylinder exchange 
their positions. The shed vortices of the positive flow impact on the 
cylinder surface when the reverse flow occurs, influencing the flow ve
locity and hence the pressure. Therefore, the sizes of pressure regions 
have some differences. It can be concluded that the averaged pressure 
coefficient is 0 in the front and rear stagnation points of the cylinder, 
presenting a V-shape in the range of 0 ≤ α ≤ 180◦ and a W-shape in the 
range of 0 ≤ α ≤ 360◦. 

3.3. Vibration response 

Figs. 9 and 10 show the streamwise and transverse amplitudes, 
respectively. As seen in Fig. 9, the larger the KC number, the smaller the 
streamwise amplitude. The cycle of oscillating flow becomes larger with 
the growth of KC number, contributing to more stable movement of the 
cylinder and hence the reduction of streamwise amplitude. In contrast, 

the streamwise amplitude is enlarged with the increase of the reduced 
velocity, which is altered with the natural frequency in this work. The 
same phenomenon is observed by Zhao et al. (2013). 

It can be seen from Fig. 10 that the root-mean-squared value of the 
transverse amplitude gradually increases when 3 < Ur < 5, and the three 
KCs number show a trend of first decreasing and then increasing in the 
range of 6 < Ur < 11; in the range of 5 < Ur < 16, there is an overall 
decreasing trend, which is similar to the lift coefficient. The transverse 
direction junction is similar to the experimental results in Kang et al. 
(2016) in that it increases first and then decreases in the reduced ve
locity range. 

Fig. 11 illustrates the vibration frequencies at different KCs number 
and reduced velocity, where fxd is the dominant frequency in the 
streamwise direction and the normalized oscillatory flow frequency is 
highlighted with red dashed line. It is seen that the dominant frequency 
in the streamwise direction is always equal to the oscillatory flow fre
quency, in spite of the existence of multiple frequencies. In contrast, the 
transverse vibration frequency follows closely the natural frequency of 
the cylinder. As a result, the vibration amplitude in the transverse di
rection is small, and the influence of vortices is not as significant as the 
streamwise direction. 

Figs. 12 and 13 show the comparison between the streamwise and 
transverse wavelet contours and the natural frequency, respectively. 
And which verifies the statement of Fig. 11. The streamwise dominant 
frequency does not coincide with the natural frequency of the cylinder 

Fig. 16. The displacement trajectory and the vibration frequency at KC = 20, Ur = 3.  
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(fnD/Um), while the transverse dominant frequency is always close to the 
natural frequency. With the increase of KC number, the oscillatory flow 
frequency becomes smaller and hence the reduction of streamwise 
dominant frequency. Nevertheless, both the streamwise and transverse 
dominant frequencies experience slight fluctuations over time, due to 
the competition among multiple frequencies. As shown in Fig. 12, in the 
content KC number, with the increase of reduced velocity, the dominant 
frequency becomes closer to the natural frequency, while the secondary 
frequency is always near the natural frequency. At the same reduced 
velocity, the dominant frequency becomes smaller and smaller with the 
increase of KC number. 

It can be seen from Fig. 13 that in the constant KC number, the vi
bration frequency of the transverse direction will also decrease with the 
reduced velocity decreasing. Except that when Ur = 3, the transverse 
vibration frequency is near the natural frequency and does not coincide 
with the natural frequency. In other cases, the transverse vibration fre
quency basically coincides with the natural frequency, which is similar 
to the situation described in Fig. 11. 

The cylinder motion generates a relative velocity between the cyl
inder and ambient fluid. Therefore, the effective flow velocity UR can be 
calculated by: 

UR =Um sin(2πt /T) − dX/dt (8) 

The amplitude of UR is defined as URm. Based on the maximum 
effective flow velocity (URm), the maximum effective KC number (KCm) 

is defined as: 

KCm =URmT/D (9) 

It is seen from Fig. 14 that KCm generally increases with Ur, due to the 
enlarged streamwise amplitude. 

3.4. Oscillating trajectory 

Dragomiretskiy and Zosso (2013) proposed a new completely 
non-recursive variation pattern decomposition (VMD) method. In this 
method, the modal decomposition is transformed into a variable 
decomposition problem and optimized by the alternate direction 
multiplier method. In the optimization process, the mode set of 
band-limited features is obtained. VMD is essentially an adaptive Wiener 
filter bank. It can separate modes with different central frequencies. 

The constrained variation model is constructed as follows: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min{uk},{ωk}

{
∑

k

⃦
⃦
⃦
⃦∂t

[(

δ(t) +
j

πt

)

∗ uk(t)
]

e− jωkt
⃦
⃦
⃦
⃦

2
}

s.t.
∑

k

uk = f

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(10)  

where, uk represents each modal component; ωk is the center frequency; 
f is the original signal; * is the symbol of the convolution operation. 

In order to obtain the optimal solution of the variation constraint 

Fig. 17. The displacement trajectory and the vibration frequency at KC = 30, Ur = 8.  

H. Zhu et al.                                                                                                                                                                                                                                     



Ocean Engineering 310 (2024) 118666

12

model, quadratic penalty factor α and Lagrange multiplication operator 
λ(t) are introduced to transform the constrained variation problem into 
an unconstrained variation solution problem. The extended Lagrange 
expression obtained is as follows: 

L({uk}, {ωk}, λ(t))=α
∑

k

⃦
⃦
⃦
⃦∂t

[(

δ(t) +
j

πt

)

∗ uk(t)
]

e− jωkt
⃦
⃦
⃦
⃦

2

2

+

⃦
⃦
⃦
⃦
⃦
f(t) −

∑

k

uk(t)

⃦
⃦
⃦
⃦
⃦

2

2

+ 〈λ(t), f(t) −
∑

k

uk(t)〉

(11) 

Then the alternating direction multiplier method is used to solve the 
variation problem, and the optimal solution of (11) is obtained by for
mula (12), (13), (14) iteratively updated un+1

k ， ωn+1
k ，λn+1. The itera

tive update expression is as follows: 

un+1
k (ω)=

f(ω) −
∑K

i=1,i∕=k
uk(ω) +

λ(ω)

2

1 + 2α(ω − ωk)
2 (12)  

ωn+1
k =

∫∞
0 ω|uk(ω)|

2dw
∫∞

0 |uk(ω)|
2dw

(13)  

λn+1
k (ω)= λn(ω) + τ

(

f(ω) −
∑K

k=1
un+1

k (ω)

)

(14)  

where τ is the noise tolerance parameter; n is the number of iterations;f 
(ω), ui(ω), λ(ω) and un+1

k (ω) represent the Fourier transforms of the f(t), 
ui(t), λ(t) and un+1

k (t), respectively. 
Until the iteration stop condition is satisfied, as shown in formula 

(15), the variational solution process ends and K modal components 
with finite bandwidth are obtained. 

∑K

k=1

⃦
⃦un+1

k − un
k

⃦
⃦2

2
⃦
⃦un

k

⃦
⃦2

2

＜ε (15)  

where ε is the judgment accuracy. 
The VMD method overcomes the problems of Empirical Mode 

Decomposition (EMD) and aliasing of modal components and has a more 
solid mathematical theoretical foundation. It can reduce the non- 
stationarity of time series with high complexity and strong nonlinear 
and obtain relatively stable subsequences containing multiple different 
frequency scales, which is suitable for non-stationarity sequences. 

Fig. 15(a) shows the division of the displacement trajectory of all 

Fig. 18. The displacement trajectory and the vibration frequency at KC = 50, Ur = 16.  
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groups, which can be divided into five types, namely Spiral, Cluttered, 
Oval, Inverted Z-shaped, and 8-shaped. The Spiral mainly appears in the 
low reduced velocity, the Cluttered mainly appears in the range of Ur 
from 7 to 14, and the Oval appears in the case of KC = 20, Ur = 16 and 
KC = 30, Ur = 5, but not in the case of KC = 50. The inverted Z-shaped 
only appears in the case of KC = 20, KC = 50 at high reduced velocity, 
while the 8-shaped is mainly distributed in the case of KC = 20, Ur = 10 
and KC = 30, Ur = 13–16. Fig. 15 (b) shows the five types of represen
tative shapes. 

Figs. 16, 17, 18, 19 and 20 show the typical cases in the five 
displacement trajectories. The original modes of vibration frequency 
and the first and second modes after VMD mode decomposition are 
given. 

As can be seen from Fig. 16, the displacement trajectory presents a 
Spiral shape when KC = 20 and Ur = 3. The streamwise direction 
response has a dominant frequency and a secondary frequency, and the 
ratio of the dominant frequency is fxd/fyd = 1/6. Due to the sub- 
frequency of vibration, the displacement trajectories are deviated, and 
multiple displacement trajectories appear. 

As can be seen from Fig. 17, when KC = 30 and Ur = 8, there are 
many miscellaneous vortices. The shed vortices collide with the cylinder 
surface, resulting in the split and reattachment of vortices and hence the 
appearance of multiple frequencies. The transverse frequency is not an 
integral multiple of the streamwise frequency. Consequently, the oscil
lation trajectory becomes irregular. 

It can be seen from Fig. 18 that when KC = 50 and Ur = 16, the 
cylinder displacement trajectory is Inverted Z-shaped. The streamwise 
direction response has a dominant frequency and a secondary frequency, 
and the ratio of the dominant frequencies is fxd/fyd = 1/3. 

It can be seen from Fig. 19 that when KC = 30 and Ur = 5, the cyl
inder displacement trajectory presents an oval, and the frequency ratio 
of streamwise direction vibration transverse direction vibration is fxd/ 
fyd = 1. According to the frequency after VMD decomposition, there are 
many sub-frequencies in the streamwise and transverse direction re
sponses, which leads to the elliptic displacement trajectory in the 
oscillating flow is not as perfect as the oval displacement trajectory in 
the steady flow. 

It can be seen from Fig. 20 that the cylinder displacement trajectory 
presents a shape of "8″ when KC = 30 and Ur = 16. At this time, the 
frequency ratio of streamwise direction vibration to transverse direction 
vibration is fxd/fyd = 1/2. 

3.5. Wake structure 

Fig. 21 (a) shows the division diagram of the end result after vortex 
shedding, which can be divided into four types, namely, Split, Merging, 
Split and Merging, and Dissipate. Because the oscillation period is small 
and the motion condition is variable, the four types all exist when KC =
20. For KC = 30, the Split and Merging form mainly exists in the low 
reduced velocity and high reduced velocity, while the Split mainly exists 

Fig. 19. The displacement trajectory and the vibration frequency at KC = 30, Ur = 5.  
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in 5 < Ur < 13. For KC = 50, Split and Merging exists in the majority. 
Fig. 21 (b) shows a schematic diagram of these four types. Split 

means that after a vortex falls off in an oscillation period, it will strike 
the cylinder again when the velocity direction changes, resulting in the 
vortex being split into two parts by impact, one part reattaches to the 
surface of the cylinder and then falls off, and the other part directly 
dissipates. The Merging is that the vortex that has fallen off and the 
vortex that has not fallen off fuse together and fall off together in one 

oscillation period. In a period of oscillation, the vortex experiences both 
Split and Merging. It may be that one vortex experiences, split and 
merging, or it may be that one vortex experiences merging and another 
vortex experiences split. Dissipation is the occurrence of no split or 
mergin and gradually dissipates after the vortex breaks away from the 
separation point. 

Figs. 22–25 give the lift and drag coefficient curves along with time, 
and vorticity distribution at different moments in a cycle corresponding 

Fig. 20. The displacement trajectory and the vibration frequency at KC = 30, Ur = 16.  

Fig. 21. The division of the incidence of vortex shedding.  
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to the typical groups of the four occurrences, respectively. The vorticity 
contours show that the generation, detachment, and development of 
vortices. The smaller the oscillation period, the faster the direction of 
fluid motion changes, which will make the newly detached vortex not 
have enough time to dissipate and some vortices will collide with the 
cylinder again. Meanwhile, the impact of the vortex also affects the vi
bration of the cylinder. In the figures, the A represents the vortex 
rotating clockwise in the current period, B represents the vortex rotating 
counterclockwise in the current period, and the subscript from 1 to n 
represents the first, and second, until the n vortices, respectively. The P 
and Q represent the vortices generated in the last period but not 
completely dissipated, where the letter P represents the vortices rotating 
clockwise in the last period, and the letter Q represents the vortices 
rotating counterclockwise in the last period, and the subscript numbers 
express the same meaning as above. As seen in Figs. 22–25, nine, four, 
thirteen and four vortices are formed in the wake in one oscillatory flow 
period, respectively, due to the split and merging of vortices. At a given 
KC number, the number of shed vortices generally reduces with the 
increase of reduced velocity, contributing to the reduction of transverse 
frequency. 

As can be seen from Fig. 22, when KC = 20 and Ur = 3, a vortex Split 
occurs. Fig. 22(a) represents the time-history curve of the lift resistance 
coefficient of KC = 20 and Ur = 3. The moment corresponding to the 

peak and trough on the time-history curve of the lift coefficient of an 
oscillation period is selected. Fig. 22(b) represents the vorticity cloud 
map corresponding to the time selected by Fig. 22(a). It can be seen that 
the vortex A2 falling off at the time t = 4971.5s moves along the velocity 
direction after changing and is divided into two parts after impacting the 
cylinder, with one part reattached to the surface of the cylinder and the 
other part gradually dissipating after falling off. and the other part falls 
off and dissipates gradually. 

It can be seen from Fig. 23 that the vorticity merges when KC = 20 
and Ur = 9. Fig. 23 (a) represents the time-history curve of the lift 
resistance coefficient of KC = 20 and Ur = 9. The moment corresponding 
to the peak and trough on the time-history curve of the lift coefficient of 
an oscillation period is selected. Fig. 23 (b) represents the vorticity cloud 
map corresponding to the time selected by Fig. 23 (a). It is found that the 
vortex Q1 generated in the last period merges with the vortex B1 in the 
current period at the time t = 4979s, while the newly generated vortex 
B1+Q1 reattaches the cylinder surface at the time t = 4985.3s due to the 
change of velocity direction. 

As can be seen from Fig. 24, when KC = 20 and Ur = 3, the vorticity 
split and merges. Fig. 24 (a) represents the time-history curve of the lift 
and drag coefficient of KC = 50 and Ur = 3. The moment corresponding 
to the peak and trough of the time-history curve of the lift coefficient of 
an oscillation period is selected. Fig. 24 (b) represents the vorticity cloud 

Fig. 22. Schematic diagram of vortex splitting in an oscillation period at KC = 20, Ur = 3: (a) time histories of lift coefficients and drag coefficients; (b) the 
instantaneous evolution of vortices in one cycle. 
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map corresponding to the time selected by Fig. 21 (a). It is found that 
when t = 5004s, vortex A4 merges with vortex A5 after falling off due to 
the change of velocity direction. When the velocity direction of A7 
changes at t = 5031s, the vortex moves along the velocity direction and 
is divided into two parts after striking the cylinder, one part reattaches 
to the surface of the cylinder, and the other part falls off and dissipates 
gradually. 

As can be seen from Fig. 25, the vortex does not appear Split, 
Merging, Split and Merging, that is, Dissipate when KC = 20 and Ur = 3. 
Fig. 25 (a) represents the time-history curve of the lift resistance coef
ficient of KC = 20 and Ur = 14. The time corresponding to the peak and 
trough of the time-history curve of the lift coefficient of an oscillation 
period is selected. Fig. 25 (b) represents the vorticity cloud map corre
sponding to the selected time of Fig. 25 (a). It is found that the vorticity 
did not split and merge during the selected oscillation period, but 
gradually dissipated after falling off. 

4. Conclusions 

Two-degree-of-freedom VIV of a circular cylinder in oscillatory flow 
is numerically investigated in this work. Simulations are carried out at 
Re = 150, ζ = 0, m* = 10, KC = 20, 30, and 50, and reduced velocity 
from 3 to 16. The vibration amplitude, hydrodynamics forces on the 
cylinder, and the vortex shedding mode are discussed. The conclusions 
are summarized as follows.  

(1) For each KC number, the variations of the RMS streamwise and 
the RMS transverse force coefficients with the reduced velocity 
are characterized by rapidly increasing to a peak followed by 
gradually decreasing and then stable with the increase of reduced 
velocity. The variation of the root mean square (RMS) force co
efficient is similar to the changes in the transverse amplitude with 
the reduced velocity. Due to the separation of the shear layer, the 
averaged pressure curve of each stage presents an obvious V- 
shape within the range of 0 ≤ α ≤ 180◦. The minimum averaged 
pressure coefficients of different KCs number also decrease with 
the increase of reduced velocity. The greater the reduced veloc
ity, the more obvious the difference between the averaged pres
sure coefficients of the three KCs number. When the velocity 
direction changes, the distribution of positive and negative 
pressure also changes. In the 0.5T including the change of ve
locity direction, the distribution of positive and negative pressure 
presents a center symmetry with the change of velocity. The 
averaged pressure coefficient is 0 at the front and rear stagnation 
points of the cylinder, presenting a V-shaped at 0 ≤ α ≤ 180◦ and 
W-shaped at 0 ≤ α ≤ 360◦.  

(2) The larger the KC number, the smaller the streamwise amplitude. 
The cycle of oscillating flow becomes larger with the growth of 
KC number, contributing to more stable movement of the cylin
der and hence the reduction of streamwise amplitude. By 
comparing the frequency amplitude with the natural frequency of 
different KC number and giving the wavelet spectrum in the XY- 
directions at the different KC number and reduced velocity, it can 

Fig. 23. Schematic diagram of vortex splitting in an oscillation period at KC = 20, Ur = 9: (a) time histories of lift coefficients and drag coefficients; (b) the 
instantaneous evolution of vortices in one cycle. 
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be seen that the streamwise dominant frequency does not coin
cide with the natural frequency of the cylinder, while the trans
verse dominant frequency is always close to the natural 
frequency. With the increase of KC number, the oscillatory flow 
frequency becomes smaller and hence the reduction of stream
wise dominant frequency. Nevertheless, both the streamwise and 
transverse dominant frequencies experience slight fluctuations 
over time, due to the competition among multiple frequencies. 

(3) The VMD mode decomposition of vibration displacement is car
ried out. The results show that the displacement trajectory can be 
divided into five types, namely Spiral, Chaos, Oval, Inverted Z- 
shaped and 8-shaped.  

(4) The fate of the vortex after the vortex falls off is divided into four 
types, including Split, Merging, Split and Merging, and Dissipate. 

Because the oscillation period is small and the motion condition is 
changeable, the four types of KC = 20 are preserved. For KC = 30, 
the Split and Merging form mainly exists in the low and high 
reduced velocities, while the Split mainly exists in the Ur range of 
5–13. For KC = 50, Split and Merging exists in the majority. This 
rule only applies to the case where the vibration is regular and 
repeatable. 
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