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In this work, the coupled dynamics of the gap flow and the vortex-induced vibration
(VIV) of a side-by-side (SBS) arrangement of two circular cylinders is numerically
investigated at Reynolds numbers 100 6 Re 6 500. The influence of VIV is
incorporated by allowing one of the cylinders to vibrate freely in the transverse
direction, which is termed as a vibrating side-by-side (VSBS) arrangement. A
comparative three-dimensional study is performed between the stationary side-by-side
(SSBS) and the VSBS arrangements to examine the characteristics of the complex
coupling between the VIV and the gap flow. The results are also contrasted against
the isolated configurations without any proximity and gap-flow interference. Of
particular interest is to establish a relationship between the VIV, the gap flow and
the near-wake instability behind bluff bodies. We find that the kinematics of the VIV
regulates the streamwise vorticity concentration, which accompanies a recovery of the
two-dimensional hydrodynamic response at the peak lock-in. Moreover, the near-wake
instability may develop around an indeterminant two-dimensional streamline saddle
point along the interfaces of a pair of imbalanced counter-signed vorticity clusters.
The interaction between the imbalanced vorticity clusters and the gap-flow momentum
are closely interlinked with the prominence of streamwise vortical structures. In both
SSBS and VSBS arrangements, the flip-flopping frequency is significantly low for
the three-dimensional flow, except at the VIV lock-in for the VSBS arrangement.
While an early onset of VIV lock-in is observed for the vibrating configuration, a
quasi-stable deflected gap-flow regime with stably deflected gap flow is found at
the peak lock-in. The increase of the gap-flow proximity interference promotes the
energy transfer and stabilizes the VIV lock-in. Finally, we employ the dynamic mode
decomposition procedure to characterize the space–time evolution of the vortex wake
system behind the cylinders.

Key words: flow–structure interactions, vortex flows, wakes/jets

1. Introduction
The canonical side-by-side arrangements of circular cylinders are common and have

a wide range of applications in various fields such as offshore, wind and aerospace
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engineering. In addition to their great practical relevance in engineering applications,
a side-by-side system has a fundamental value due to the richness of nonlinear flow
physics associated with the near-wake dynamics and the vortex-to-vortex interactions.
There is a considerable difference between the flow dynamics of an isolated cylinder
and the multiple-cylinder arrangements. Many comprehensive investigations, e.g.
Zdravkovich (1987), Sumner et al. (1999), Sumner, Price & Paidoussis (2000),
Lin, Yang & Rockwell (2002), Sumner (2010), were performed to understand and
describe the mutual flow interference in the basic canonical multi-body systems, in
which the importance of the wake and proximity interference was discussed as a
function of the gap width between the cylinders and the Reynolds number. Among
them, the flip-flopping of gap flow during the flow past two symmetrically arranged
cylinders has received significant attention among researchers. Different from the other
fundamental flow regimes in a two-dimensional laminar flow, the bi-stable character
and chaos-like fluctuation of the flip-flopping pattern have intrigued the research
community over the past few decades. In the event of a flip-flop, the gap flow fails
to maintain its straight path and has an intrinsic tendency to oscillate intermittently
between two asymmetric states.

The phenomenon of flip-flopping flow was reported in several experimental works
at relatively large Reynolds numbers (Re= 103

∼ 105) (Ishigai et al. 1972; Bearman
& Wadcock 1973; Williamson 1985; Kim 1988). In particular, the flip-flop was
interpreted by Kim (1988) as a complex dynamical state with bi-stable stochastic
characteristics and a biased deflected gap-flow regime with asymmetric narrow
and wide wakes with distinct predominant frequencies. The gap flow was found
to switch intermittently its direction on a time scale which was a few orders of
magnitude greater than the frequency of primary vortex shedding. In addition to these
experimental works, the flip-flop was also observed within a narrow gap ratio range
from 0.3 to 1.25 diameters in a two-dimensional laminar flow from various numerical
investigations (Kang 2003; Agrawal, Djenidi & Antonia 2006). In the deflected
gap-flow regime, the narrow near-wake region involves an enhanced vortex–wake
interaction, which results in a higher vortex shedding frequency and mean drag
force. On the other hand, a lower frequency is observed in the wide wake. The
vortex-shedding frequency of each cylinder dynamically changes with the gap-flow
kinematics as the time evolves.

Although the origin of the flip-flopping was investigated by many researchers,
there is no common consensus on a general understanding of the phenomenon.
To begin, Alam & Sakamoto (2005) reported that a perfect symmetric structure
geometry was a critical condition which originated the intermittent switching of
the gap flow. However, the gap-flow flip-flop was also observed in the asymmetric
vibrating side-by-side (VSBS) arrangements of Liu & Jaiman (2016). In one of the
pioneering studies, Ishigai et al. (1972) considered the Coanda effect as the origin of
the gap-flow flip-flop. Nonetheless, the flip-flop was found in the near-wake region
behind a pair of side-by-side flat plates by Bearman & Wadcock (1973), Williamson
(1985). Peschard & Le Gal (1996) modelled the dynamics of the deflected gap-flow
regime through a system of two coupled Landau oscillators. The study illustrated
that the stable deflected gap-flow regime and the flip-flop were formed by different
mechanisms. Following the earlier studies, Carini, Giannetti & Auteri (2014) reported
that the flip-flop could be explained as a secondary instability through the coupling
between a Hopf bifurcation (in-phase vortex synchronization) and the pitchfork
bifurcation (deflected gap-flow regime). This finding was subsequently supported by
Liu & Jaiman (2016) in which the evolution of the flip-flop from the interaction of
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these two bifurcations was shown in a series of streamline plots as the Reynolds
number increased. The flow characteristics were systematically investigated as a
function of the gap distance between the two cylinders. The exact instants of the
flip-flop and the instantaneous vortex-shedding frequencies were visualized via the
Hilbert–Huang transform (HHT) technique of Huang (2014).

In relation to the vibrating side-by-side configuration, Liu & Jaiman (2016) also
reported that the flip-flop was suppressed at the lock-in, in which the time-averaged
streamwise velocity profile of the gap flow became asymmetric. On the other hand,
the lock-in range with respect to the reduced velocity became relatively narrower,
owing to the enhanced vortex-to-vortex interaction caused by the gap-flow proximity
interference. A topological description based on critical points has also shown that
indeterminant two-dimensional saddle-point regions intermittently appeared in the
middle path of the gap flow. The appearance of such saddle points was found to
be linked with the near-wake instability. These critical points, where the velocity
is zero and the streamline slope is indeterminate, contribute to the shear stress and
can provide some understanding of the three-dimensional flow structures behind bluff
bodies (Zhou & Antonia 1994). While there exist several studies on the near-wake
instability and three-dimensionality for the canonical case of a circular cylinder, such
effects are not explored for stationary side-by-side cylinders. In particular, the mutual
effects between the three-dimensionality and the gap-flow interference have not been
examined in the past in the context of vibrating side-by-side cylinders. During the
lock-in/synchronization, the vibrating cylinder undergoes a complex interaction with
the gap flow and the near-wake vortex system behind the two cylinders.

The primary focus of the present study is to investigate the influence of three-
dimensional (3-D) flow structures on the dynamics of an immersed side-by-side
configuration in a uniform flow. The complete three-dimensional flow field is
important for interpreting the topology of flow patterns and the role of critical
points in the instability process, however 3-D information is generally difficult
to extract from physical experiments. In a 3-D flow behind an isolated circular
cylinder (i.e. large gap distance between cylinders), the formation of the rib-like
streamwise vortical structures connecting the spanwise Kármán vortices is one of
the characteristic flow features of the organized motion. As reviewed in Williamson
(1996b), there are two types of instability during the wake flow transition, namely
mode-A and mode-B. The mode-A instability (180 . Re . 230) is associated with
the waviness of the primary Kármán vortices induced by the elliptic instability,
whereas the counter-rotating streamwise vortices are formed in the high-strain region
between the main spanwise vortex rolls. The conversion of the spanwise vorticity
from the Kármán vortex cores into the streamwise vortices is an outcome of the
elliptic instability and forms the central element of the mode-A instability. The onset
of mode-A instability manifests a hysteretic discontinuity of Strouhal number St and
the Reynolds number Re relationship with a spanwise wavelength of approximately
3∼ 4D. While the mode-A intrinsically triggers a vortex dislocation in the wake of a
stationary isolated circular cylinder during the wake transition, the mode-B (Re& 230)
with a spanwise wavelength of approximately one diameter exhibits a non-hysteretic
transition. A relatively high shedding frequency occurred with a more organized
three-dimensional state of the mode-B and vice versa. In the present study, we
consider the near-wake instability and three-dimensionality for side-by-side cylinders
for 100 6 Re 6 500.

In spite of the above investigations, many aspects of the proximity interference
and the wake interference from the gap flow remain largely unexplored. A detailed
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three-dimensional description of the flow dynamics and the wake–body interaction is
particularly lacking in the literature. In the context of three-dimensionality associated
with the elliptic instability for a single cylinder, the hyperbolic critical points were
investigated by Kerswell (2002), Le Dizes & Laporte (2002) and Meunier, Le Dizes &
Leweke (2005). From the topological theory of separated flows, the two-dimensional
streamline orbitals resemble hyperbolas around a hyperbolic critical point, where
its central velocity magnitude is zero and all eigenvalues of the velocity gradient
have the non-zero real parts. The hyperbolic critical points in the fluid domain had
been previously reported as an unstable factor by Lifschitz & Hameiri (1991) and
Leblanc (1997), where the maximal perturbation growth was found precisely around
these hyperbolic points near the vortex wake. Although the role of critical points
has been limited to a single cylinder, they have not been examined in the context of
side-by-side cylinder wakes. One of the contributions of the present study is to build
connections between the near-wake instability, the vortex wake interaction and the
fluid momentum. By considering one of the cylinders as elastically mounted in the
VSBS arrangement, the coupling between the near-wake dynamics and vortex-induced
vibration (VIV) is examined in three dimensions for the first time.

In the present work, we use well-resolved numerical simulations to elucidate some
insights into the effects discussed above at Reynolds numbers of 100 6 Re 6 500.
Specifically, we explore the spanwise characteristics of the gap-flow and VIV
kinematics for 3-D flow through systematic numerical analysis. We employ the
recently developed variational finite element solver for fluid–structure interaction
(Jaiman, Guan & Miyanawala 2016a; Jaiman, Pillalamarri & Guan 2016b). The fluid
and structure equations are coupled in three dimensions by body-conforming treatment
of the fluid–solid interface via an arbitrary Lagrangian–Eulerian formulation. Of
particular interest is to answer the following questions: How do the VIV kinematics,
the gap-flow instability and the hydrodynamic responses accommodate themselves in
a 3-D flow? How does the gap-flow kinematics influence the 3-D flow features? How
does the spanwise correlation respond to the cylinder’s kinematics and the gap-flow
instability? In most engineering applications, flexible multi-body structures subjected
to proximity interference and resonant wake–body interaction are much more common.
Such multi-body systems can exhibit complex spatial-temporal dynamics as functions
of geometric variations and physical parameters. A fundamental understanding of
such complex nonlinear coupling is essential for efficient engineering design and
safer operations. The incorporation of VIV in the investigation is crucial to reflect
the practical effects of structural motion and the interference on the hydrodynamic
forces.

The remainder of the paper is organized as follows. The numerical formulation, the
problem set-up and the verification are briefly presented in § 2. Following that, the
regulation effect of VIV kinematics on the three-dimensional features is discussed
in § 3. We next investigate the mutual interference between the 3-D flow and the
gap-flow kinematics in stationary side-by-side (SSBS) arrangements in § 4. The
coupled dynamical characteristics of the VSBS arrangements are presented in § 5.
The primary focus is on the VIV lock-in phenomenon in the VSBS arrangements
for a range of reduced velocity at representative gap ratios. We investigate the flow
physics of the gap flow and the VIV kinematics in terms of the wake topology, the
response characteristics, the force components, the phase and frequency characteristics.
The three-dimensional modal analysis is discussed in § 6. Concluding remarks and a
summary of main results are provided in § 7.
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2. Numerical methodology
2.1. Coupled fluid–structure system

A Petrov–Galerkin finite element formulation is employed to investigate the
fluid–structure interaction problem, whereby the body interface is tracked accurately
by the arbitrary Lagrangian–Eulerian technique. The traction and the velocity
continuity conditions are imposed on the body-conforming fluid–solid interface
via the nonlinear iterative force correction procedure (Jaiman et al. 2016a,b). The
coupling scheme relies on a dynamic interface force sequence parameter to stabilize
the coupled fluid–structure dynamics with strong inertial effects of incompressible
flow on immersed solid bodies. The temporal discretizations of both the fluid and
structural equations are formulated in the variational generalized-α framework and the
systems of linear equations are solved via the generalized minimal residual (GMRES)
solver. Further details can be found in Jaiman, Sen & Gurugubelli (2015), Jaiman
et al. (2016b). Detailed convergence investigations and the validation results of the
two- and three-dimensional simulations are reported in Liu & Jaiman (2016), Li et al.
(2016) and Mysa, Kaboudian & Jaiman (2016), which support the suitability of the
fluid–structure solver in simulating the 3-D gap flow and VIV interaction.

2.2. Dynamic mode decomposition
While the proper orthogonal decomposition (POD) modes may not necessarily provide
a description of a dynamically evolving flow driven by a momentum input, the
dynamic modal decomposition (DMD) allows us to extract the dominant spatial
and temporal information about the flow (Schmid 2010). Therefore, we employ
the dynamic modal decomposition to fit a discrete-time linear system to a set of
snapshots from three-dimensional wake data. The goal of the DMD technique is
to approximate the system in a low-dimensional subspace and to construct a set
of approximated eigenvectors and eigenvalues to identify the spatial and temporal
modes. For a more robust and effective implementation of the DMD technique, the
modal amplitude (α) is computed through the best fit between the linearized modes
and original snapshot data in a least-squares sense (Jovanovic, Schmid & Nichols
2014). The amplitude can be physically interpreted as the strength of a particular
mode in the dynamical response of a flow system. This analysis is useful to examine
nonlinear dynamical behaviour with evolving frequencies. Hence one is able to
analyse a particular characteristics or mechanism through an appropriate selection of
modes based on their spatial distribution, frequency and growth or decay rate. Among
various DMD algorithms, the singular value decomposition (SVD)-based DMD is the
most popular and robust algorithm against round-off errors. In the literature (Schmid
2010; Schmid et al. 2011; Liu & Jaiman 2016), the DMD technique was demonstrated
for several fluid dynamics problems to examine the flow field characteristics in the
space, time and frequency domains via DMD modes. Herein, the focus is on the
application of one of the variants of DMD technique, sparsity-promoting dynamic
mode decomposition (SP-DMD) by Jovanovic et al. (2014), to analyse the near-wake
stability and to decompose the complex flow dynamics in the near-wake region
behind the SBS system. Further details of the SP-DMD formulation can be found in
Jovanovic et al. (2014).

2.3. Problem set-up and verification
The basic apparatus comprises a flexibly mounted cylinder of diameter D, placed
in a uniform free-stream flow stream U. For the side-by-side configuration, another
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FIGURE 1. (Colour online) Three-dimensional computational set-up of side-by-side (SBS)
arrangement: (a) schematic diagram of the fluid domain and the boundary conditions; (b)
representative unstructured mesh distribution in (x, y)-plane at g∗ = 0.8. Here Cylinder 1
is free to vibrate in transverse direction and Cylinder 2 is stationary.

cylinder with an equal diameter is placed at gap distance g. The cylinders are
placed in a three-dimensional hexahedron domain, where the flow is along the
streamwise x-axis, while the axis of the cylinder is along the spanwise z-axis. The
numerical set-up for the 3-D simulation is essentially a spanwise extension of the
two-dimensional set-up presented in Liu & Jaiman (2016), where the upstream
distance, the downstream distance and the overall height of the fluid domain are
respectively 50D, 50D and 100D. A schematic diagram of the three-dimensional
SBS arrangement is shown in figure 1(a). The traction-free boundary conditions are
respectively implemented along the domain boundaries Γt, Γb and Γo. The top cylinder
with mass m, Cylinder 1, is elastically mounted on a linear spring (with natural
frequency fn) in the transverse direction for the VSBS arrangements. The blockage
ratio is taken as 2 %. A representative (x, y)-plane sectional mesh configuration is
exhibited in figure 1(b). Based on the mesh convergence analysis in Liu & Jaiman
(2016), the spatial discretization error is less than 1 % in the (x, y)-plane mesh. For
the 3-D flow at Re= 500, the (x, y) sectional mesh is further refined, particularly the
mesh within the boundary layer and the near-wake regions. Here ρ and µ denote
the fluid density and the dynamic viscosity, respectively. The dimensionless wall
distance y+ is kept less than one (within the viscous sublayer) for the first layer of
the structural mesh around bluff bodies. The increment ratio of element size from the
boundary layer to the near-wake region and far field is less than 1.1 to reduce the
effect of element skewness. Overall, there are approximately 80 × 103 elements and
120 × 103 elements for each (x, y) section for the isolated cylinder cases and SBS
arrangement cases, respectively.

The spanwise length is taken as l∗ = 10, based on the aspect ratio analysis in the
numerical simulations from Lei, Cheng & Kavanagh (2001) and the experiments from
Szepessy & Bearman (1992). A periodic boundary condition is employed at the ends
of the cylinder span to eliminate the end-plate effect. The mesh convergence study
along the z-axis is shown in table 1. The spanwise resolution 1z = 0.15 is chosen
such that the spanwise spatial discretization error is controlled within 2.5 % while
maintaining the computational efficiency of our parametric study. Furthermore, the
(x, y)-plane mesh convergence analysis in table 2 shows that the spatial discretization
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Spanwise resolution Cmean
d Crms

l St

1z= 0.4 1.341 (12.2 %) 0.763 (118.6 %) 0.2197 (7.1 %)
1z= 0.15 1.196 (0.08 %) 0.357 (2.3 %) 0.2051 (0.0 %)
1z= 0.075 1.195 0.349 0.2051

TABLE 1. Convergence of global flow quantities at different spanwise mesh resolutions
for a stationary isolated circular cylinder at Re= 500 and l∗ = 10.

Number of elements in the (x, y) plane Cmean
d Crms

l St

50× 103 1.29 (7.9 %) 0.637 (80 %) 0.2051 (0.0 %)
81× 103 1.196 (0.05 %) 0.357 (0.8 %) 0.2051 (0.0 %)
110× 103 1.1954 0.354 0.2051

TABLE 2. Convergence of global flow quantities for different (x, y) meshes for a
stationary isolated circular cylinder at Re= 500, 1z= 0.15 and l∗ = 10.

Time step Cmean
d Crms

l

1t= 0.1 1.310 (11.6 %) 0.634 (82.2 %)
1t= 0.05 1.196 (1.9 %) 0.357 (2.6 %)
1t= 0.025 1.178 (0.43 %) 0.352 (1.2 %)
1t= 0.01 1.173 0.348

TABLE 3. Convergence of integrated force quantities at different time steps for a
stationary isolated circular cylinder at Re= 500, 1z= 0.15 and l∗ = 10.

error is within 1 % at the chosen (x, y)-plane mesh resolution of 81 × 103, which
has 160 points along the cylinder surface. Since the gap-flow instability is the key
concern of the present investigation, the majority of the investigations are performed
at two representative gap ratios g∗= 0.8 and g∗= 1.0. However, the investigations on
the boundary circumstances, e.g. around g∗ ≈ 0.3 and g∗ ≈ 1.5 where the gap flow is
significantly suppressed and weakened, are still incorporated to facilitate the generality
of our analysis. A detailed temporal convergence study of the current numerical solver
has been performed in Jaiman et al. (2016b) for two-dimensional cases. The L2 norm
error was reported at approximately 1 % at a constant time step 1t = 0.05. Results
for the temporal convergence of a 3-D stationary isolated circular cylinder at a
Reynolds number of 500 are summarized in table 3. The maximum Courant number
is approximately 3 for this stationary isolated cylinder case at Re = 500. Since the
fully implicit second-order variational formulation (Jaiman et al. 2016b) based on
the generalized-α time integration (Jansen, Whiting & Hulbert 2000) is employed,
the present fluid–structure solver is stable at relatively large Courant numbers while
selecting the time step size appropriately to resolve the spatial-temporal dynamics
of the vortex-shedding process. The important dimensionless simulation parameters
and the post-processing quantities are listed in tables 4 and 5, respectively. In
tables 4 and 5, the standard quantities L, m, C, fvs, Arms

y , φAy , φCl , Fx, Fy and
v∗ = v/U are respectively the spanwise length of cylinder, the mass of a cylinder,
the damping coefficient of structural equation, the vortex-shedding frequency, the
root-mean-squared transverse vibration amplitude, the phase angle of Ay, the phase
angle of Cl, the streamwise hydrodynamic force, the transverse hydrodynamic force
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Parameter Value Description

l∗ = L/D 5–10 Dimensionless spanwise length
g∗ = g/D 0.3–3 Gap ratio

m∗ =
4m

ρπD2L
10 Mass ratio

ζ =
C

4πmfn
0.01 Damping ratio

Ur =
U

fnD
0–10 Reduced velocity

Re=
ρUD
µ

100–500 Reynolds number

TABLE 4. Non-dimensional parameters for isolated and side-by-side VIV.

Parameter Description

St=
fvsD
U

Strouhal number

Amax
y =

√
2Arms

y Dimensionless transverse displacement

1φ = φAy − φCl Phase angle difference

Cl =
Fx

1
2
ρU2DL

Lift coefficient

Cd =
Fy

1
2
ρU2DL

Drag coefficient

Ce =

∫
T

Clv
∗ dτ Energy transfer coefficient

TABLE 5. Derived dimensionless quantities for detailed analysis.

and the dimensionless transverse velocity of the vibrating cylinder. Unless otherwise
stated, all positions and length scales are normalized by the cylinder diameter D,
velocities by the free-stream velocity U and frequencies by U/D. To validate the
numerical formulation in a three-dimensional flow, a comparison with a stationary
isolated circular cylinder at Re= 300 is presented in table 6.

The comparison of the overall VIV response with the previous results of Blackburn
et al. (2001) is shown in table 7. The results are in close agreement with the previous
studies, and thus the computational set-up is adequate for our present investigation. A
total of eighty-five simulations are performed in the present investigation, comprising
seven simulations for the validation of the three-dimensional fluid–structure interaction
(FSI) solvers, fifty-two cases for the principal investigation of the isolated, SSBS
and VSBS arrangements; and twenty-six two-dimensional cases to investigate the
relationship between the near-wake instability, the fluid shearing ratio and the
fluid momentum. By taking into consideration a large number of three-dimensional
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Cmean
d Crms

l St

Simulation
Zhang et al. (1995) 1.44 0.68 0.216

Persillon & Braza (1998) 1.366 0.477 0.206
Present 1.26 0.5 0.205

Experiment Wieselsberger (1921) 1.208 — —
Williamson (1996a) — — 0.203

TABLE 6. Comparison of numerical and experimental results for a stationary isolated
circular cylinder at Re = 300, where Cmean

d is the mean drag coefficient, Crms
l is the

root-mean-squared of lift coefficient fluctuation and St is the Strouhal number.

Re Ur Simulation Experiment Present
(Blackburn, Govardhan & Williamson 2001) (Blackburn et al. 2001)

606.1 5.51 0.460 0.550 0.525
713.9 6.49 0.433 0.485 0.462
848.1 7.71 0.420 0.430 0.424

TABLE 7. Validation of transverse amplitude Amax
y for a freely vibrating cylinder in

three-dimensional flow at m∗ = 5.08 and ζ = 0.024.

simulations and the involved computational resources, the selected time window is
constrained at tU/D∈ [250,350], in which the fluid flow is already fully developed for
the extraction of flow statistics. In the selected time window, all fluid features, such
as the hydrodynamic responses and the vibration amplitude, undergo at least twenty
cycles. In particular, we are interested in the behaviour of the flip-flop subjected to
the influence of VIV and the three-dimensionality within a short time window.

3. Vortex-induced vibration in three-dimensional flow

Before proceeding to further investigation on the complex coupling between the 3-D
flow, the VIV and the gap-flow kinematics in the SBS arrangements, the interference
of the VIV on the 3-D flow dynamics is systematically examined first. Similar to
the work of Papaioannou et al. (2006), three-dimensional effects in the near wake are
examined via dimensionless enstrophy, as defined below:

ξi(t)=
D2

U2V

∫
Ω

ω2
i (x, t) dV, (3.1)

where ωi and V denote the i-component of vorticity vector and the integration volume,
respectively. The enstrophy is decomposed into primary ξz and secondary components
ξxy = ξx + ξy, where ξi is the time-averaged value of ξi(t) over a time interval. The
enstrophy is directly associated with the dissipative effects of the fluid kinetic energy,
and the generation and breakdown of coherent flow structures. In particular, the ratio
of secondary enstrophy ξxy over the total enstrophy ξt = ξx + ξy + ξz is investigated to
quantify the three-dimensionality in the near-wake region. The secondary enstrophy
should become negligible for two-dimensional flow. The enstrophy values are
computed within a representative control volume (V) in the near-wake region and
incorporate the majority of the near-wake region where coherent structures are
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FIGURE 2. (Colour online) Quantification of three-dimensionality at Re = 500, m∗ = 10,
ζ = 0.01 and Ur ∈ [0, 9]: (a) variation of enstrophy ξ with respect to Ur value, (b)
dependence of cross-correlation of hydrodynamic responses at Ur = 5.0.

concentrated, e.g. x/D ∈ [0.6, 1.6], y/D ∈ [−4, 4] and z/D ∈ [0, 10]. The number of
data-sampling probes is close to the total number of grid points in the chosen control
volume. The sampling frequency is 10 times higher than the primary vortex-shedding
frequency. The sampling period is approximately 10 primary vortex-shedding cycles
starting from the instance of a peak Cl value. The enstrophy analysis for an isolated
cylinder at Re= 500 is shown in figure 2(a). Overall, the total enstrophy ξt values are
nearly constant at the off lock-in condition. While the values of ξz slightly decrease
at post-lock-in, ξxy shows an obvious increase at post-lock-in. Notably, a significant
suppression of ξxy, ξxy/ξt ≈ 0.0, is clearly shown at peak lock-in at Ur ∈ [4, 5].
Sudden variations of ξxy and ξz are observed at the transition from the earlier to the
peak lock-in. In a nutshell, we can deduce that (i) the VIV kinematics possesses a
regulation effect, whereby the forces are strongly correlated in the spanwise direction
at the peak lock-in, and (ii) the streamwise vorticity is significantly suppressed at the
peak lock-in.

Next, we proceed with the spanwise variation of flow dynamics along the cylinder.
To measure the waviness of flow properties in the spanwise z-direction, we quantify
the correlation length using the spatial-temporal variations of fluid forces, which are
directly dependent on the vorticity distributions in the near-wake region. A correlation
length provides a statistical description to identify a representative length scale for the
spanwise fluctuations associated with three-dimensional effects. To quantify the degree
of spanwise correlation, we define the cross-correlation along the cylinder as follows

κ(l∗i , l∗j )=
εiεj − ε̄iε̄j

σεiσεj

, (3.2)

where i and j indicate the spanwise locations and εi, ε̄i and σεi refer to the scalar
quantity at spanwise location l∗i , its time-averaged value and standard deviation,
respectively. Using (3.2), we estimate the cross-correlation κ of the spanwise Cl and
Cd to extract the spanwise fluctuations. While a shorter correlation length implies
dominance of spanwise fluctuations (i.e. three-dimensionality), a uniform 2-D flow
exhibits a longer correlation length.
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FIGURE 3. (Colour online) Instantaneous vortical structures using the Q-criterion for an
isolated cylinder at Re= 500, Q= 0.2, ωy=±1 (contours) and tU/D= 300: (a) stationary;
Ur = (b) 3; (c) 5; and (d) 7 at m∗ = 10 and ζ = 0.01 for a freely transversely vibrating
cylinder. Streamwise vorticity clusters vanish at the peak lock-in Ur = 5.

A higher value of κ at the peak lock-in in figure 2(b) illustrates the suppression
of streamwise vorticity in the near-wake region, as observed in figure 2(a). Such
a weakening effect of the spanwise force suggests that there exists a particular
regulation mechanism which causes the recovery of 2-D hydrodynamic behaviour
along the cylinder. This regulation (stabilization) effect is further visualized by
the iso-surfaces of the vortical structures using vortex identification based on the
Q-criterion (Hunt, Wray & Moin 1988) in figure 3. Consistent with these observations,
the streamwise vorticity clusters at the lock-in are completely invisible in figure 3(c).
An additional 2-D simulation at the identical problem set-up is also performed and
the resultant hydrodynamic responses from the 2-D configuration are identical with
its 3-D counterpart. Since there is no external energy source to perturb the flow field,
we can deduce that the aforementioned recovery of two-dimensionality at the peak
lock-in is an intrinsic characteristic of the fluid response, instead of an artificially
restricted fluid behaviour.

To further assess the aforementioned behaviour, we consider a stationary isolated
cylinder at a representative moderate Reynolds number, Re= 500. Figure 4 shows the
(x, y)-sectional snapshots at l∗ = 5 in the near-wake regions. The intense streamwise
vortex rollers are formed along the interface of the counter-signed vortex separating
layers and across the saddle-point regions. This observation conforms with the
topological description of the turbulent flow pattern from Perry & Chong (1987).
Based on the definition of streamline saddle point (SSP), appendix A shows that
the inflection points in the velocity profiles are indeed in the saddle-point region.
These inflection points are subsequently visualized in figures 5(a,b) and 5(c,d) at
t = 3/5T when the SSP appears at the investigated location, (1.33D, −0.72D, 5D).
In particular, a high streamwise vorticity concentration of the same sign appears on
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FIGURE 4. (Colour online) Illustration of saddle-point region along the interface of
imbalanced counter-signed vorticity clusters for a stationary cylinder at tU/D= 300 and
l∗= 5 for Re= 500: (a) contours of ωx=±1.0 (solid lines) and ωz=±1.0 (dashed lines),
and (b) sectional streamlines.

both sides of the saddle point along the z-axis in figure 5(e), which is consistent
with the observation of Zhou & Antonia (1994), whereby the streamwise vortical
structures are inclined and crossed approximately at the saddle-point region in the
(x, y)-plane. Hence, the presence of the high-strain rates reflects the significance of
the two-dimensional SSP to the three-dimensionality of this flow.

Following that, a stability analysis using the DMD technique is performed in a
saddle-point region at low Reynolds number in appendix B. It is found that the
near-wake instability around the saddle point is dependent on the intensity of the
fluid momentum, Reynolds number effect and the interaction between the imbalanced
vorticity clusters. Huang, Narasimhamurthy & Andersson (2010) recently reported
that a planar shear flow could enhance the three-dimensionality in the wake behind
a circular cylinder. (Here a planar shear flow refers to an inflow with a constant
velocity gradient along the y-axis.) It supports the discussion about the significance
of the interaction between the imbalanced vorticity clusters in appendix B.

In the present investigation, we further analyse the relationship between the
near-wake instability and the resultant imbalanced vortex-to-vortex interaction from the
planar shear flow. The fluid shearing is known to be critical to the Kelvin–Helmholtz
instability. Since significant shear stresses are observed on the interface of the
imbalanced counter-signed vorticity clusters, the interaction between different vorticity
clusters is believed to be crucial to the near-wake instability. The critical points, e.g.
streamline saddle point, can be observed in both 2-D and 3-D flows. To simplify our
discussion, the fluid stability around a saddle-point region for the 2-D laminar flow
is included as a supportive example. While Re . 48, the symmetric counter-signed
circulations are interacting and no instability is observed behind a stationary isolated
circular cylinder. It is when the perturbation approaches the brink of a critical value,
the perturbation becomes non-negligible and induces the need for the extra dimension
to quantify itself e.g. the introduction of a new dimension via a Hopf bifurcation
and the flow transition from the laminar flow to the turbulent flow. These two factors
associated with the near-wake instability facilitate the understanding of the proximity
interference induced from the gap-flow behaviour in a three-dimensional flow in § 4.

To link the observations on the saddle-point regions to the recovery of two-
dimensional hydrodynamic responses, a series of streamline-contour plots of the
locked-in cylinder are investigated for a single primary vortex-shedding cycle in
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FIGURE 5. (Colour online) Instantaneous velocity profiles across a streamline saddle point
at (1.33D, −0.72D, 5D) for a stationary isolated circular cylinder at Re = 500: (a,b) u
versus y from (1.33D, −0.22D to −1.22D, 5D), u ∈ [−0.5, 0.5] contour; (c,d) v versus
x from (0.83D to 1.83D, −0.72D, 5D), v ∈ [−0.5, 0.5] contour; (e, f ) w versus z from
(1.33D, −0.72D, 4.5D to 5.5D), w ∈ [−0.25, 0.25] contour. T is one period of primary
vortex-shedding cycle. The inflection points are in the saddle-point region.

figure 6. Based on the discussion on the streamline saddle point in appendix A, the
saddle point generates a local stagnant region which inhibits the transfer of kinetic
energy from the mean flow. The saddle point moves with the kinematics of the
separating shear layer along the interface and represents a communication barrier.
As the vortex wake reaches its maximum growth, it eventually breaks up and sheds
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FIGURE 6. (Colour online) Instantaneous contours and sectional streamline topology in
the (x, y)-plane for a transversely vibrating isolated cylinder at the peak lock-in for one
cycle of primary vortex shedding (out-of-phase): Re = 500, m∗ = 10, ζ = 0.01, Ur = 5,
l∗ = 5, ωz =±1.0, contours in (a,c,e), and velocity amplitude |U| =

√
U2 + V2 ∈ [0, 1.5],

contours in (b,d, f ).

downstream. A strict periodic motion at the peak lock-in generates well-segregated
vortex wakes downstream which have relatively benign interactions from the vortex
wakes. (The focus is to investigate the influence of a saddle-point region on the
vortex-shedding process. Hence the vortex shedding modes are not discussed here.)
This vortex-shedding mode inhibits the formation of the fluid shearing along the
interface of the vortex wakes. A direct consequence is the recovery of the 2-D
hydrodynamic response along the cylinder.
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FIGURE 7. (Colour online) Hydrodynamic forces as a function of the reduced velocity
for a transversely vibrating isolated cylinder at m∗ = 10 and ζ = 0.01: (a) the mean drag
coefficient Cmean

d with respect to the reduced velocity Ur; (b) the root-mean-square (r.m.s.)
lift coefficient Crms

l with respect to the reduced velocity Ur.

A turbulent wake flow at the off lock-in results in a smaller Cmean
d value than its

laminar flow counterpart in figure 7, where Cmean
d is over-predicted by relatively large

two-dimensional vortex wakes at the lock-in. Overall, the response of Cl shows an
increment in the transverse fluctuating lift force and an earlier onset of the VIV
lock-in. As reported by Liu & Jaiman (2016) for similar problem set-ups with
two-dimensional laminar flow, the earlier onset of VIV than its corresponding case
without proximity interference is attributed to the enhanced vortex interaction which
leads to a higher vortex shedding frequency. At the peak lock-in, both Cd and Cl at
Re = 500 show respectively an approximately 6 % and 22 % amplification compared
to their laminar counterparts from Liu & Jaiman (2016). In contrast to the streamwise
effect, these results indicate that the VIV regulation effect has a profound influence on
the transverse response. A similar phenomenon was observed by Zhao et al. (2014),
in which the spanwise correlations were discussed at the VIV lock-in and uniformity
of Cl was observed along the span of a vibrating cylinder. Here, the primary focus
is to understand the complex near-wake flow physics in the SBS arrangements.

4. Three-dimensional gap-flow interference
In this section, the relationship between the gap-flow-induced proximity interference

and the near-wake instability is discussed for the cylinders with SBS arrangements.
An incorporation of the interference from the VIV kinematics is important to
analyse practical applications and operations in side-by-side systems. So far the
three-dimensional numerical investigation of the gap flow instability in the SBS
arrangements has rarely been documented. Hence, the present investigation on the
VSBS arrangements in a 3-D flow is deemed as another step further to understanding
the gap flow and the VIV kinematics. From a systematic analysis viewpoint, it is
desirable to first focus merely on the interaction between the gap-flow kinematics and
the 3-D flow by eliminating the motion of the structure.

The flip-flopping pattern is frequently described as an intermittent deflection of
the gap flow. As reported by Liu & Jaiman (2016), the switchover of Cmean

d from
each cylinder in the SSBS arrangement could indicate the direction of gap-flow
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FIGURE 8. (Colour online) Time traces of hydrodynamic forces for SSBS arrangement at
g∗ = 0.8: (a,c) Re= 100, the flip-flopping is marked at tU/D= 270, 300 and 330; (b,d)
Re= 500.

deflection. Since the vortex-to-vortex interaction is enhanced in the narrow near-wake
region, the corresponding frequency fvs value is higher than its wide near-wake region
counterpart. To investigate the characteristics related to the gap-flow features without
and with the presence of 3-D effects, figure 8 is plotted. In the two-dimensional
laminar flow, figure 8(a,c), fvs of the cylinder with the narrow near-wake region is
observed to possess a larger value. However, this tendency is not confirmed in its
three-dimensional counterpart, as shown in figure 8(b,d). The figures show that there
is no significant difference among the mean vortex-shedding frequencies of the two
cylinders for the 3-D flow, although the gap flow deflects. In addition, the flip-flop
is not observed in the selected time window tU/D ∈ [250, 350] in figure 8(d), since
fflip is remarkably low for the 3-D flow.

In table 8, a comparison of secondary enstrophy is shown between a representative
SSBS arrangement in the deflected gap-flow regime and a stationary isolated cylinder.
Overall, the mean concentration of secondary enstrophy ξxy/ξt in the near-wake region
for the side-by-side arrangement is smaller than the isolated counterpart. While ξxy/ξt
is distinctively small in the wide near-wake region, ξxy/ξt in the narrow near-wake
region is higher than the secondary enstrophy concentration for the isolated cylinder.
This observation is consistent with the discussion in appendix B, where the near-
wake instability is shown to be dependent on the gap-flow proximity interference.
Consequently, the three-dimensional structure prevails in the narrow near-wake region
where the gap-flow proximity interference is significant, as visualized in figure 9.
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FIGURE 9. (Colour online) Instantaneous vortical structures using the Q-criterion at Re=
500, tU/D = 300, Q = 0.2 and ωy = ±1 (contours): (a) stationary cylinder; (b) SSBS
arrangement at g∗ = 0.8. The streamwise vorticity concentration is higher in the narrow
near-wake region.
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FIGURE 10. (Colour online) Horizontal velocity profiles of gap flow for SSBS
arrangements at Re = 100 and Re = 500. Velocity profiles are extracted at the gap-flow
location (0.6D, 0.7D to −0.7D) where (0D, 0D) is the centre between the cylinders. The
time averaging is performed from tU/D ∈ [250, 350].

Arrangement ξxy/ξt

Mean Narrow Wide

Isolated 10.26 % — —
Side-by-side 8.86 % 11.54 % 3.8 %

TABLE 8. Comparison of ξxy/ξt between isolated and side-by-side arrangement at
Re= 500, g∗ = 0.8 and tU/D ∈ [300, 350].

A further investigation on the velocity profile in figure 10 shows that the
three-dimensional gap flow at higher Reynolds number possesses a much larger fluid
shear rate than its two-dimensional counterparts. Therefore, the fluid in the narrow
near wake is more prone to being unstable, because of the high velocity gradients
associated with the gap flow. Apart from the critical factors identified in § 3, we
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FIGURE 11. (Colour online) Spanwise vorticity ωz contours in SSBS arrangement at
Re = 500, g∗ = 0.8, l∗ = 5 and ωz = ±1.0 (contours): (a) tU/D = 303; (b) tU/D = 313.
Large interfaces of different vorticity concentrations are observed in the narrow near-wake
regions.

–4

–2

–2 0 2 4 6 8
–4

–2

0

2

4

–2 0 2 4 6 8

(a) (b)

–4

–2

–2 0 2 4 6 8
–4

–2

0

2

4

–2 0 2 4 6 8

(c) (d)

0

2

4

0

2

4

FIGURE 12. (Colour online) Streamline and instantaneous contours of streamwise vorticity
ωx and spanwise vorticity ωz of cylinders in SSBS arrangement in the (x, y)-plane at Re=
500, g∗ = 1.0, tU/D= 300, ωx =±1.0 (contours), ωz =±1.0 (solid-dashed lines) in (a,c)
and sectional streamlines in (b,d): (a,b) l∗ = 4; (c,d) l∗ = 8.

also notice another unstable factor in the narrow near-wake region, large adjoining
interfaces of ωz clusters, as shown in figure 11. Shear stresses with a remarkable
strength are present along these adjoining interfaces, which may result in a significant
streamwise vorticity concentration formed in the narrow near-wake region, as shown in
figure 12. In the near-wake region, the locations with intensified streamwise vorticity
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FIGURE 13. (Colour online) Instantaneous contours of ωx in the (y, z)-plane in SSBS
arrangement at Re= 500, g∗= 0.8, ωx=±1.0 and x/D= 1: (a) tU/D= 175, the gap flow
momentarily deflects to Cylinder 1 (top section); (b) tU/D=350 the gap flow momentarily
deflects to Cylinder 2 (bottom section).

clusters follow these interfaces closely, which further confirms the observation about
the SSP in § 3. The SSP lies right at the point with significant streamwise vorticity
concentration along the interface of ωz clusters. A more straightforward visualization
is exhibited by the (y, z)-sectional contour plots of ωx in figure 13. Figure 13(a,b)
refers to the contour plots of ωx for the SSBS arrangement, where the gap flow
deflects to Cylinder 1 and Cylinder 2 at tU/D = 175 and tU/D = 350, respectively.
Two distinct streamwise vorticity distributions are clearly shown in the narrow and
wide near-wake regions. This asymmetric distribution of streamwise vorticity has a
profound influence on the dynamical response.

Figure 14(a) shows distinctively higher and lower Cmean
d values for the cylinders with

the narrow and wide near-wake regions, respectively. Furthermore, the algebraic sum
of Cmean

d shows a base-bleeding type effect, as reported for the SSBS arrangements
in Bearman & Wadcock (1973). Hence the overall response of Cd is diminished.
However, this base-bleeding effect is weakened as the value of g∗ increases beyond
the deflected gap-flow regime. To analyse the transverse response, Crms

l is adopted
to characterize the fluctuating extent of Cl as a function of the gap ratio g∗ in
figure 14(b). The quantity Crms

l represents the fluctuation intensity (absolute value) of
the transverse force and is measured from the Cmean

l value between a time interval
when the gap flow stably deflects to one particular side of the SSBS arrangements.
It should be noted that the in-phase and out-of-phase of Cl from both cylinders have
to be taken into account when computing the resultant transverse force fluctuation
for the SBS arrangements. Similar to figure 14(a), a drastic transverse fluctuation
of the lift appears along the cylinder with the narrow near-wake region. The overall
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FIGURE 14. (Colour online) Fluid forces as a function of gap ratio for stationary side-by-
side arrangement: (a) mean drag coefficient, (b) r.m.s. lift coefficient. Here the subscripts
t, n and w denote respectively the total, the narrow and the wide near-wake regions.

transverse fluctuation of Cl is calculated as a sum of Cl from each cylinder, as shown
in figure 14(b). A force modulation is clearly shown for the deflected gap-flow regime
g∗ ∈ [0.8, 1.5], where the overall transverse fluctuation of Cl is excited by a factor of
2.4. Since the gap flow is significantly suppressed at g∗ . 0.5, the overall fluctuation
of Cl is benign. While Crms

l along an individual cylinder is drastically amplified
beyond g∗ & 1.5, the overall value of the entire structure system is diminished and
cancelled out, due to the dominant out-of-phase vortex-shedding regime at these gap
ratios. The above observations show that the gap-flow instability is critical to the
global stability of the SBS systems in engineering operations with a relatively small
gap ratio, where stronger force modulation is observed.

It is observed that the 3-D flow not only modulates the hydrodynamic forces, but
also the flip-flop frequency fflip. Generally, fflip appears to be lower in 3-D higher
Re flow, as compared to its 2-D laminar flow counterpart. Liu & Jaiman (2016)
visualized the flip-flopping instant as a zero phase angle difference between Cl in the
SSBS arrangements. Different from a two-dimensional laminar flow, the existence of
the streamwise vorticity clusters in the formation region varies fvs values along the
cylinder span and results in a repetitive temporal modulation of fvs. To completely
flip over the gap-flow direction, at least a few cycles of in-phase vortex shedding
are required. Due to the interference from the gap flow, the modulation of fvs on
each cylinder is chaotic and intermittent and fflip is significantly influenced by the
three-dimensionality.

5. Coupling of VIV and 3-D gap-flow kinematics
In this section, the VIV kinematics and the gap-flow instability are coupled in

the VSBS arrangements, where Cylinder 1 is elastically mounted in the transverse
direction. To begin, the flip-flopping frequency fflip is analysed for the VSBS
arrangements. In figure 15, fflip is not observed at the off-lock-in conditions for
the selected time window, which is similar to the SSBS arrangement. However, fflip
in the VSBS arrangements is remarkably increased during the onset and the end
of VIV lock-in. In the present 3-D work, fflip is found to be VIV dependent. Some
of the phenomena reported by Liu & Jaiman (2016) for the VSBS arrangements
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FIGURE 15. (Colour online) Time traces of drag force in the VSBS arrangements where
Cylinder 1 vibrates in the cross-flow direction at Re= 500, g∗= 0.8, m∗= 10 and ζ = 0.01:
Ur = (a) 3; (b) 4; (c) 6 and (d) 8.

are also observed for the 3-D configurations. For instance, a quasi-stable deflected
gap-flow regime occurs at the peak lock-in, where the gap flow permanently deflects
toward the locked-in vibrating cylinder. This is further evident by the time-averaged
spanwise vorticity contours in figure 16. Liu & Jaiman (2016) observed an early
onset of VIV in the side-by-side arrangements for 2-D laminar flow. The enhanced
vortex interaction results in a higher frequency of primary vortex shedding and an
early match with the natural frequency fn. In the present investigation, an early onset
of VIV is also observed in figure 17 for the 3-D side-by-side arrangement. This
observation is further supported by the analysis of the vortex-shedding frequency, the
phase angle and energy transfer in figure 20, which are discussed in the subsequent
paragraphs.

As discussed in the previous sections, the near-wake instability is subject to
influences from the VIV kinematics and the gap-flow-induced proximity interference.
When both VIV and proximity interference are present in a three-dimensional flow,
the analysis of three-dimensionality become subtle and multifaceted. To quantify
the three-dimensional effect, the concentration of ξxy is summarized in table 9 for
a representative VSBS arrangement at different reduced velocity values. It can be
seen that the recovery of two-dimensional response is still observable at the peak
lock-in. A distinct difference of ξxy concentration in the narrow and wide near-wake
regions is found at the stationary and peak lock-in. The concentration of ξxy is
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FIGURE 16. (Colour online) Streamline and time-averaged spanwise vorticity ωz for the
VSBS arrangement at Re = 500, g∗ = 0.8, m∗ = 10, ζ = 0.01, Ur = 4.0 and ωz = ±1.0.
Time averaging is performed over 60 vortex-shedding cycles.
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FIGURE 17. (Colour online) Time-averaged maximum transverse vibration amplitude as a
function of reduced velocity for the VSBS arrangements at Re = 100 and 500, m∗ = 10
and ζ = 0.01.

further visualized by the sectional contour plots in figure 18 in the (x, y)-plane and
figure 19 in the (y, z)-plane. The concentration of ξxy in the near wake behind the
locked-in cylinder is much higher than its isolated counterpart at the same Ur value,
owing to the gap-flow proximity interference. Different from the SSBS arrangements,
the ξxy concentration in the narrow near-wake region behind a vibrating cylinder is
relatively smaller than the wide one behind the stationary cylinder. This phenomenon
is attributed to the regulation effect of VIV kinematics. The above observation implies
both VIV and gap-flow proximity interference influence the near-wake instability in
the VSBS arrangements. The VIV regulation effect is generally dominant at the peak
lock-in.

To further investigate the characteristics of the VIV lock-in and the gap-flow
proximity interference, the VSBS arrangements at two typical gap ratios, g∗ = 0.8
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FIGURE 18. (Colour online) Streamline and instantaneous contours of streamwise vorticity
ωx and spanwise vorticity ωz in the (x, y)-plane for Ur = 4.0 (peak lock-in) at
(Re, g∗, m∗, ζ ) = (500, 0.8, 10, 0.01): (a,b) l∗ = 4; (c,d) l∗ = 8. In (a,c) ωx = ±1.0 and
ωz =±1.0 are shown by colour contours and solid-dashed lines, respectively.

Ur ξxy/ξt

Mean Narrow Wide

0.0 8.86 % 11.54 % 3.8 %
3.5 19.96 % 19.65 % 20.40 %
4.0 (lock-in) 5.67 % 0.76 % 12.72 %
5.0 18.66 % 16.76 % 21.80 %
6.0 23.73 % 21.75 % 25.93 %

TABLE 9. Comparison of ξxy/ξt for the VSBS arrangement at Re= 500, g∗ = 0.8,
Ur ∈ [0.0, 6.0] and tU/D ∈ [300, 350].

and 1.0, in the deflected gap-flow regime are considered. Consistent with figure 17,
the frequency ratio plot in figure 20(a) confirms the early onset of the VIV lock-in.
While the onsets of the VIV lock-in at various g∗ values are different, the ends of
VIV lock-in approximately occur at an identical Ur value for the VSBS arrangements.
The phase angle difference 1φ is plotted in figure 20(b), whereas 1φ is computed
as 1φ = φAy − φCl using the HHT technique to study the energy transfer between
the fluid flow and the vibrating cylinder; 1φ is a time-averaged value. For the
VSBS configuration, the phase difference is computed within a time interval when
the gap-flow stably deflects toward the vibrating cylinder. For an isolated vibrating
cylinder in 2-D flow, 1φ continues to increase as the reduced velocity increases. In
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FIGURE 19. (Colour online) Instantaneous contours of ωx in the (y, z)-plane for the
cylinders in the VSBS arrangement at Re= 500, g∗= 0.8, m∗= 10.0, ζ = 0.01, Ur= 4 (the
peak lock-in stage), ωx =±1.0 (contours) and tU/D= 350: (a) x∗ = 1.25; (b) x∗ = 1.5.

addition, a sharp jump is observed for the isolated vibrating cylinder at approximately
Ur≈ [7, 8]. A similar discontinuity of the phase angle difference was also reported by
Leontini et al. (2006) at the peak lock-in, which is correlated to the VIV kinematics
and the vortex wakes. When Ur exceeds 8.0, 1φ becomes completely out-of-phase. A
similar profile of 1φ is observed for the isolated vibrating cylinder with 3-D flow, as
depicted by the blue curve in figure 20(b). The difference is the onset of VIV lock-in,
which occurs at a relatively smaller Ur value. For the VSBS arrangements, when the
gap ratio is reduced, the proximity interference becomes greater. As a consequence,
the values of 1φ are stabilized at approximately 140◦ for the vibrating cylinder in
the VSBS arrangement at the lock-in Ur ∈ [5, 8], as shown in figure 20(b).

In addition to the phase difference 1φ, the energy transfer coefficient Ce is also a
useful quantity. It indicates the instantaneous energy transfer between the fluid flow
and the vibrating structure. As defined in table 5, the energy transfer coefficient Ce

is expressed by the transverse velocity v for the dimensionless time scale τ = tU/D
in the primary vortex-shedding cycle T . While the magnitude of Ce quantifies the
work done by the fluid forces, its sign indicates the direction of energy transfer. The
trend of Ce computed within one cycle of the primary vortex shedding is shown
in figure 20(c). While the value of Ce reaches a maximum at the peak lock-in for
all cases, it attains its maximum at smaller Ur for the higher Reynolds number.
Specifically, the peak value of Ce becomes greater, as the gap ratio decreases in
the VSBS arrangements, e.g. the blue curve at Ur = 4.0 in figure 20(c). In contrast,
the curve of Ce becomes closer to the isolated vibrating cylinder as the gap ratio
increases. The amount of energy transferred over the off-lock-in Ur range is trivial
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FIGURE 20. (Colour online) Variations of frequency, phase relation and energy transfer
as a function of reduced velocity at Re∈ [100, 500], m∗= 10 and ζ = 0.01: (a) frequency
ratio f /fn, (b) phase angle 1φ between Ay and Cl and (c) averaged energy transfer for
one primary vortex-shedding cycle.

compared to the lock-in counterparts. These trends of Ce imply that the amount of
energy transferred is much larger for the configurations of higher Reynolds number
and small gap ratio. In the next section, modal analysis is performed to investigate
the near-wake instability in space and time.

6. Three-dimensional modal analysis

Three-dimensional wakes behind the multi-body systems at even a moderate
Reynolds number can exhibit complex temporal and spatial flow features. To extract
relevant dynamical information, a modal analysis has become a common practice
to decompose the flow field into the important features with organized large-scale
motions. Similar to the modal analysis in Liu & Jaiman (2016), SP-DMD is employed
to investigate the spanwise vortical regions in the near wake of the SBS arrangements.
The primary focus is to explore the complex dynamics of the three-dimensional wakes
in the space and the frequency domains. From the computational efficiency viewpoint,
the l∗ value is reduced to five diameters. To supplement the discussion in § 2.3, the
adopted l∗ value should be sufficient to extract the important dynamical characteristics.
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FIGURE 21. (Colour online) Dependence of DMD amplitude α on frequency at Re= 500
for stationary cylinder, SSBS arrangement at g∗= 0.8 and VSBS arrangement at g∗= 0.8,
m∗= 10, ζ = 0.01 and Ur= 4. Here α value is the optimal amplitude of each DMD mode
obtained from an optimization process in the sparsity-promoting DMD analysis.

A summary of the DMD amplitude as a function of frequency for the representative
cases is shown in figure 21.

The decomposed DMD modes are selected via the sparsity-promoting process in
the DMD technique (Jovanovic et al. 2014). Here all selected cases show a strong
mean flow vortex mode at fD/U ≈ 0. In particular, a stationary isolated circular
cylinder shows three clusters of modal frequencies at approximately 0.2, 0.4 and
0.6. Based on the discussion in Liu & Jaiman (2016) and comparison with other
spectral analyses in the literature, the DMD modes at the modal frequencies 0.0, 0.2
and 0.4 in figure 21 account for the mean flow, the lift and the drag characteristics,
respectively. The corresponding DMD modes are visualized in figure 22(a–c), where
fD/U denotes the dimensionless frequency for a particular DMD mode and f
represents the vortex–wake frequency in each DMD mode in Hz. The observed
DMD mode with fD/U= 0 manifests the mean flow across the cylinder. Furthermore,
the DMD mode at fD/U = 0.61 was not observed by Liu & Jaiman (2016) for
the 2-D laminar flow condition. By considering the mode in figure 22(b) as a
fundamental mode, the mode at fD/U = 0.61 can be treated as a third harmonic
mode for the SSBS arrangement, while figure 21 shows relatively concentrated vortex
modes at low frequency fD/U ∈ (0.05, 0.2) due to the gap-flow proximity interference.
Corresponding to different modal frequencies of the lift forces on each cylinder (see
figure 23), we extract two vortex modes, at fD/U ≈ 0.12 behind Cylinder 1 and
at fD/U ≈ 0.24 for Cylinder 2 within the narrow near-wake region. (The gap flow
deflects to Cylinder 2 at tU/D ∈ (250, 350) and induces a narrow near-wake region.)
The increase in fvs is induced by the enhanced vortex-to-vortex interaction in the
narrow near-wake region. Furthermore, a similar third harmonic vortex mode is also
extracted in this SSBS arrangement, while taking the mean of 0.12 and 0.24 as a
normalized modal frequency. The third harmonic vortex mode is represented by an
isolated vortex mode at fD/U ≈ 0.5 (crosses) in figure 21 and is highly concentrated
in the narrow near-wake region, as depicted in figure 23(d).

It is known that the third-order harmonic mode is strongly related to the instability
of a dynamical system, since it breaks down the equilibrium of the fundamental base
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FIGURE 22. (Colour online) Iso-surface plots of ωz modes of stationary cylinder at Re=
500, tU/D ∈ [250, 350] and ωz = ±0.01. A strong third-order harmonic vortex mode is
decomposed at fD/U ≈ 0.61.

mode and distorts the wave forms. These third-order harmonic modes of spanwise
vorticity ωz are only observed after the flow transition and are highly concentrated in
the region with enhanced three-dimensional flow structures. The footprints of these
modal vortex patterns are found to form further away from the cylinders in both the
isolated and the SBS configurations. Consistent with the discussion on the recovery
of 2-D hydrodynamic responses in § 3, it confirms again that the three-dimensional
vortical structures originate from the vortex interactions. In addition, figure 23(b)
shows a discontinuous vortex roller mode behind Cylinder 1 with a momentary
wide near-wake region. The shedding cell strength is approximately three diameters
along the spanwise direction. On the contrary, Cylinder 2 with the narrow near-wake
region is followed by a continuous vortex roller mode in figure 23(c) in the same
time window. The above observation is confirmed from the contour plots of the
y-component velocity in figure 24, where a vortex discontinuity is observed behind
Cylinder 1 with a wider near-wake region in figure 24(a). The spanwise vorticity
ωz cluster of the same sign is dislocated in the streamwise direction and exhibits
a discontinuity in fvs. Since the spanwise vorticity cluster momentarily or partially
deflects away from the wide near-wake region, fvs of Cylinder 1 is dynamically varied
by the motion of the gap flow and entails a vortex discontinuity.

In the VSBS arrangement, fvs for both cylinders are synchronized with the natural
frequency fn of the locked-in vibrating cylinder. The vortex modes at the same modal
frequencies (triangles) in figure 25 are well distributed behind both cylinders. Owing
to the recovery of the 2-D hydrodynamic response, the ωz modes in figure 25(c,d) are
rather similar to their 2-D counterparts in Liu & Jaiman (2016) at relatively higher
modal frequencies. Nonetheless, different from the 2-D laminar flow counterparts,
an influential vortex mode at fD/U ≈ 0.16 is observed in the middle path of the
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FIGURE 23. (Colour online) Iso-surface plots of ωz modes of SSBS arrangement at Re=
500, g∗ = 0.8, tU/D ∈ [250, 350] and ωz =±0.01. A vortex discontinuity is observed in
a wide near-wake region behind the right-hand side cylinder in figure 23(b). A strong
third-order harmonic vortex mode is decomposed into a narrow near-wake region behind
the left-hand side cylinder in figure 23(d).
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FIGURE 24. (Colour online) Contours of transverse velocity v in the (z, x)-plane for SSBS
arrangement at Re= 500, g∗ = 0.8, tU/D= 320 and v=±0.1: (a) wide near-wake region
of Cylinder 1 at y = 0.9D, where the gap flow deflects away momentarily, (b) narrow
near-wake region of Cylinder 2 at y=−0.9D with the gap-flow deflection.

gap flow in figure 25(b). The 3-D effect is minimized to the greatest extent along
the locked-in vibrating cylinder, thus the 3-D vortical structure is merely coupled
with the gap flow and the stationary cylinder. By fast Fourier transform (FFT), we
find a resemblance between the frequencies of the spanwise force fluctuation of the
stationary cylinder and this modal frequency. By further analysing the position of its
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FIGURE 25. (Colour online) Iso-surface plots of ωz modes of VSBS arrangement at Re=
500, g∗ = 0.8, m∗ = 10, ζ = 0.01, tU/D ∈ [250, 350] and ωz =±0.01. The vortex modes
are well distributed at the peak lock-in. A strong low frequency vortex mode is observed
in the middle path of the gap flow.

vortex pattern, this particular vortex mode is found to originate from the secondary
vortex-to-vortex interaction in the gap flow.

7. Conclusions
The dynamics of three-dimensional gap flow and VIV interaction are numerically

investigated in side-by-side circular cylinder arrangements at Reynolds numbers
in the range 100 6 Re 6 500. A body-conforming Eulerian–Lagrangian technique
based on the variational finite-element formulation has been applied for the
fluid–structure interaction. We found that the VIV kinematics regulate the streamwise
vorticity concentration in the near wake, which results in a significant recovery of
two-dimensional responses at the peak lock-in. An indeterminant streamline saddle
point was observed to form along the interface between the imbalanced vorticity
clusters in the near wake. The saddle-point regions are intrinsically associated with
high local strain rates and contribute to the formation of three-dimensional vortical
structures. The gap-flow momentum and the interactions between imbalanced vorticity
clusters are found to be critical for the near-wake instability.

In both SSBS and VSBS arrangements, the concentration of ξxy was observed to
exhibit a strong dependency on the gap-flow proximity interference. We observed a
distinctive concentration of ξxy in the narrow and wide near-wake regions for both
SSBS and VSBS arrangements. While the narrow near-wake region has a higher ξxy
concentration than the wide one for the SSBS arrangements, the narrow near-wake
behind the locked-in vibrating cylinder exhibits a lower ξxy concentration for the
VSBS configuration. A force modulation was observed by the deflected gap flow
in the SSBS arrangements, which caused the amplification of Crms

l . While an early
onset of VIV lock-in was observed for the VSBS arrangements, the flip-flopping
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was remarkably suppressed for both SSBS and VSBS arrangements at off-lock-in.
A quasi-stable deflected gap-flow regime and a recovery of two-dimensionality were
reported for the VSBS arrangements at the peak lock-in. By promoting energy transfer
and regulating the VIV lock-in, the gap flow was found to exert a strong proximity
interference.

Through the modal analysis, the third-order harmonic ωz vorticity modes were
dynamically decomposed for the isolated cylinder and the SSBS arrangements. Owing
to their odd-order characteristics, the third vortex modes are crucial to the stability
of the dynamic fluid–structure system and represent an unstable factor. A vortex
discontinuity originating from the gap-flow kinematics was observed using the DMD
technique in the wide near-wake region. An additional influential ωz vorticity mode
along the middle path of the gap flow in the VSBS arrangement was observed, which
was related to the periodic undulation of the spanwise force fluctuation along the
cylinder and represented the promoted gap-flow instability.

Overall, it was found that the vortex-to-vortex interaction between the imbalanced
counter-signed vorticity clusters plays an important role in the near-wake stability,
because of the significant fluid shearing along the vortical interfaces. In general, the
intensive fluid shear along the vortical interfaces is associated with the indeterminant
streamline saddle-point regions. The saddle-point region is found in all range of
Reynolds number and is interlinked with various flow dynamic events, e.g. vortex
shedding, flip-flopping and the streamwise vorticity clusters. Furthermore, the
near-wake instability is found to be closely interlinked with the gap flow and the VIV
kinematics. In particular, as the VIV kinematics increases and stretches the vortices,
the vorticity clusters are more separated which weaken the vortex-to-vortex interaction
in the near-wake region. As a result, the two-dimensional hydrodynamic responses
are significantly restored along the cylinder. On the contrary, the interaction dynamics
between the gap-flow proximity interference and the gap-flow instability enhances
the vortex-to-vortex interaction. These observations and findings are important in
multi-body systems, from both operations and design viewpoints, found in offshore
and aeronautical engineering.
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Appendix A. Streamline saddle point and (x, y)-plane velocity profile
Here, we present a brief analysis on the streamline saddle point along the (x, y)-

plane. While the velocity components from the streamfunction ψ(x, y) are

u=
∂ψ

∂y
, v =−

∂ψ

∂x
, (A 1a,b)

the streamline saddle point is given by

∂ψ

∂x
= 0;

∂ψ

∂y
= 0;

∂2ψ

∂x2

∂2ψ

∂y2
−

[
∂2ψ

∂x∂y

]2

< 0 at (x, y)= (0, 0) (A 2a−c)

in a two-dimensional incompressible flow far from any boundaries. A fourth-order
biquartic polynomial for a ψ(x, y) surface patch is employed to approximate the
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local continuous ψ(x, y) field around an SSP (where the fluid shear stresses are
linearly approximated in the field). Assuming that the parametric surface of the
two-dimensional streamfunction is smooth, continuous and its spatial derivatives are
everywhere well-defined up to the highest order of the approximating function, a
local flow field can be represented by a general form as follows

ψ(x, y) = a0 + a1x+ a2y+ a3xy+ a4x2
+ a5y2

+ a6x3
+ a7x2y+ a8xy2

+ a9y3

+ a10x4
+ a11x3y+ a12x2y2

+ a13xy3
+ a14y4

+O(x5, y5). (A 3)

Here ai (i = 0, . . . , 14) are arbitrary scalar constants and O(x5, y5) is the truncation
error. Based on the second derivative test for local extreme values, equation (A 3) has
to satisfy criterion (A 2) to approximate a (non-degenerated) two-dimensional SSP at
(0, 0). This is equivalent to imposing the conditions a1 = a2 = 0 and 4a4 · a5 < (a3)

2

in (A 3), which leads to the following function:

ψ(x, y) = a0 + a3xy+ a4x2
+ a5y2

+ a6x3
+ a7x2y+ a8xy2

+ a9y3

+ a10x4
+ a11x3y+ a12x2y2

+ a13xy3
+ a14y4

+O(x5, y5). (A 4)

To investigate the flow field characteristics at the saddle-point region, x= 0 and y= 0
are substituted into the first and second derivatives of (A 4) as follows

u(0, 0)= 0; v(0, 0)= 0,
∂u
∂y

∣∣∣∣
(0,0)

= 2a5;
∂v

∂x

∣∣∣∣
(0,0)

=−2a4,

∂2u
∂y2

∣∣∣∣
(0,y)

= 6a9 + 24a14y;
∂2v

∂x2

∣∣∣∣
(x,0)

=−6a6 − 24a10x,

∂2u
∂y2

∣∣∣∣
(0,0)

= 6a9;
∂2v

∂x2

∣∣∣∣
(0,0)

=−6a6.


(A 5)

By analysing (A 5), it is found that the velocity is zero at the saddle point and
generates a local stagnant region. The directional gradients of u and v are scalar
constants at the saddle point. The second-order derivatives of u and v have a linear
relationship with respect to the y and x variables, respectively. Hence there is a point
along y and x axes respectively across the streamline saddle point, where ∂2u/∂y2 and
∂2v/∂x2 switch their signs. The zero values of ∂2u/∂y2 and ∂2v/∂x2 are the locations
of the inflection points of u and v. As the values of a9 and a6 approach zero, the
inflection points in the velocity profile translate toward the streamline saddle point.
Since the linear odd-order terms in the approximating biquartic polynomial tend to
destroy the symmetry of ψ(x, y) about the saddle point, the amplification of their
coefficient values is detrimental to the formation of the saddle point. Thus, the
locations of the velocity profile inflection points are expected to be in the vicinity of
the streamline saddle point.

Appendix B. Stability analysis of streamline saddle point
This appendix is concerned with the near-wake instability in the saddle-point

region behind the cylinders in the SSBS arrangements. The goal is to investigate
the connection between the near-wake stability and its stability parameters e.g. the
Reynolds number Re, the fluid shear ratio S=U1/U2 and the gap ratio g∗, using the
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FIGURE 26. (Colour online) Stability analysis of the wakes around the saddle-point
regions behind the cylinders in SSBS arrangements: (a) bifurcation diagram at Re = 40
for v versus Re and v versus S, where v is an averaged peak value (tU/D ∈ [300, 400])
of y-component velocity at the location (2D, 0D) behind a cylinder (0D, 0D); (b) |µ|
versus Re and |µ| versus S.

DMD analysis. Here U1 and U2 are respectively x-component inlet velocities at the
upstream of the gap flow and the free side of cylinders in the SSBS arrangement.
The development of the well-known Hopf bifurcation at a low Reynolds number
Re. 100 is taken as an indication of the near-wake instability. Its direct relationships
with Re and S values are used to analyse the importance of the fluid momentum
and the fluid shearing ratio induced by the imbalanced counter-signed vorticity
concentration to the near-wake stability. A relatively large g∗ > 3.5 at Re . 100, is
considered to eliminate the gap-flow proximity interference. The gap-flow proximity
interference with the near-wake stability is subsequently analysed by further reducing
g∗. The rest of parameters are identical to the (x, y)-section of the three-dimensional
computational set-up.

To analyse the dependency of the near-wake instability on the Reynolds number,
the DMD mode which accounts for the vortex shedding is identified in the saddle-
point region in figure 26(b). At smaller Re and S, the unstable modes decay as the
fluid flow develops, since |µ| < 1. Using the DMD technique, the eigenvalue µ =

µr + jµi is extracted from the modal data of ωz, where µr, µi and j are its real part,
imaginary part and imaginary unit respectively. As the values of Re and S increase, the
ωz vorticity mode reaches an equilibrium state |µ|= 1. Similar to the stability analysis
in Mizushima & Ino (2008), a bifurcation diagram of the y-component velocity at
(2D, 0D) is plotted in figure 26(a). The relation given in (B 1) is used to identify
a Hopf bifurcation, where pi and ps are the stability parameter and its critical value,
respectively. This means that the limit cycle size |v+(pi)−v−(pi)| varies proportionally
with respect to the square-root of the difference between the stability parameter p and
its critical value as follows

|v+(pi)− v−(pi)| ∝
√

pi − ps, (B 1)

where v+(pi) and v−(pi) are the time-averaged maximum and the minimum of y-
component velocity v(Pi) at (2D, 0D), respectively. For mathematical convenience, we
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FIGURE 27. (Colour online) Bifurcation diagram of v with respect to the gap ratio g∗ at
Re= 45, g∗ ∈ [0.1, 0.33], where v is an averaged peak value (tU/D ∈ [300, 400]) of the
y-component velocity at locations (2D, 0D) behind the cylinder (0D, 0D).

shift the mean value to the middle of the range |v+(pi)− v−(pi)|, whereby v+ and v−
are introduced as

v+(pi)= 0.5(v+(pi)− v−(pi)),
v−(pi)=−0.5(v+(pi)− v−(pi))

H⇒ |v+(pi)− v−(pi)| = |v+(pi)− v−(pi)| ∝
√

pi − ps.

 (B 2)

Using (B 2), the origin of the fluid instabilities in figure 26(a) is identified as due
to Hopf bifurcations. Observing figure 26(a,b), the onset of vortex shedding occurs
exactly at Re≈ 48 as the Re value increases. Its modal frequency and vortex pattern
at the saturated state conform with those of vortex shedding documented in earlier
numerical and experimental investigations of a stationary isolated circular cylinder.
Similar to the Reynolds number effect, a saturation state of the vortex mode occurs
at S≈ 1.33.

The stability analysis results indicate that the near-wake instability is not only
significantly correlated with the fluid momentum, but also the fluid shear ratio. This
conclusion agrees with the observation of an earlier flow transition induced by a
planar shear flow reported by Lankadasu & Vengadesan (2008), in which a planar
shear was reported with an enhancement effect on the flow transition. Similarly the
DMD technique is used to investigate the correlation between the gap ratio g∗ and
the near-wake stability in the SSBS arrangement. Based on (B 2), the near-wake
instability shown in figure 27 is identified as a Hopf bifurcation, which starts to
develop as g∗ . 0.33. This means that the gap-flow proximity interference is also
critical to the near-wake stability in the SSBS arrangements, as g∗ value decreases. To
summarize, the fluid shear ratio S, the fluid momentum intensity Re and the gap-flow
proximity interference g∗ are significant to the near-wake stability.
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