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In this article, an accurate and robust numerical formulation is presented for the simulation 
of the fluid-structure interaction in incompressible fluid flow. The incompressible Navier-
Stokes equation is discretized with a stabilized finite element framework on the fixed 
Eulerian grid. Both symmetric and non-symmetric Nitsche’s methods are accessed and 
employed to weakly impose Dirichlet boundary condition along the interface embedded 
in the element together with the ghost penalty method stabilizing the solution jump 
across the element edges. An easy-to-implement and robust numerical integration scheme 
based on a projection approach is proposed. To the author’s knowledge, so far, there is 
no application of a projection-based approach in the field of numerical integration to 
deal with discontinuities. Therefore, the results presented in this article is considered as 
a pioneered and novel projection-based approach in the field of numerical integration to 
deal with embedded discontinuous function. A second-order staggered-partitioned scheme 
is employed to weakly couple the fluid and structure solvers. A second-order accurate and 
unconditionally stable time integration scheme is implemented for simulations. Accurate 
numerical results are obtained in the numerical examples and validation cases, including 
vortex-induced vibration (VIV), rotation, freely fall and rigid-body contact.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Fluid-structure interaction (FSI) is frequently encountered in many areas of mechanical, offshore, aerospace and civil 
engineering. The subtle and fascinating coupling phenomenon between the fluid and the elastically-mounted submerged 
bodies has attracted attention across diverse research communities. Over decades, a significant amount of efforts had been 
dedicated to the investigation of mutual responses from both fluid and structures under various flow conditions, e.g., angle 
of attack, shear flow and turbulent flow, and structure configurations, e.g., side-by-side, tandem, staggered and near-wall. 
However, large displacements and body-contact of structures often happened in the investigations, which cause a severe 
mesh distortion and pose difficulties to the numerical formulation. To address these difficulties, we propose an accurate and 
robust numerical formulation in this work.
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Body-fitted formulation A well established technique to deal with FSI problem is arbitrary Lagrangian-Eulerian (ALE) formu-
lation [1–5] using body-fitted meshes. The advantage of ALE-based approach is the position of the structure within fluid 
domain is timely known and an appropriately-managed fine mesh can be constructed along the submerged interface to 
accurately approximate the boundary layer. However, large structural deformations and topological changes can significantly 
distort the meshes and increase the element skewness, which eventually lead to a high computational cost in re-meshing.

Unfitted formulation To overcome these difficulties in ALE formulations, the idea of unfitted formulation was proposed 
to weakly impose Dirichlet boundary condition along the embedded interfaces over fixed background meshes. The unfitted 
formulation is an appealing approach in problems involving moving interfaces, e.g., fluid-structure interaction or free surface 
flows, as well as situations in which efforts are made to eliminate the generation of body-fitted meshes. For example, 
the immersed boundary (IB) method [6,7] and its variations, e.g., [8–12], are ones among the well-accepted approaches 
in unfitted formulation. Alternative well-established numerical methods under finite element framework are distributed 
Lagrange multiplier / fictitious domain (DLM/FD) method [13–15] and extended finite element method [16–18].

Embedded interface and cut cell stabilization The concept of distributing Lagrange points along the embedded interfaces was 
well established and implemented in the aforementioned numerical approaches. However, an appropriate choice of Lagrange 
multiplier basis space is critical to satisfy the Babǔska-Brezzi (BB) condition [19,20]. Recently, the Nitsche’s method [21]
gained attention among research communities, because of its advantages, e.g., variationally consistent and no increment 
in system size. It has been implemented to investigate a number of fluid-structure-interaction (FSI) problems, e.g., [22–
28]. The element with an embedded interface is termed as a cut cell. As an interface cuts through it, the cut cell is 
demarcated into smaller cells, which is termed as integration cells. Some infinitesimal integration cells pose a challenge 
to the stability of numerical formulation and results into excessive system matrix condition number. Burman (2010) [29]
proposed a stabilization technique, ghost penalty method, to alleviate the solution jump across the cut cell. In the present 
work, we implement the symmetric & non-symmetric Nitsche’s method with ghost penalty terms to weakly impose the 
Dirichlet boundary along the embedded interface.

Integration of cut cell In all unfitted interface formulations, the numerical integration over the cut cell requires a special 
attention. In this work, we propose a projection-based adaptive Gauss quadrature (PAGQ) scheme. It can be used on either 
Tessellation or adaptive mesh refinement (AMR) technique. Tessellation [30,31] is a well-established method, in which the 
cut cell is triangulated or quadrangulated into smaller integration cells. Its advantage is the embedded discontinuity can 
be accurately captured by aligning with the edge of integration cells. However, Tessellation algorithm becomes complicated 
in three dimensional space. An alternative is AMR technique, e.g., quatree or smart octree [32,33], which overcomes the 
difficulty in aligning the integration cell with embedded discontinuities. The primary differences of PAGQ from Tessellation 
and AMR are (1) no change in finite element (FE) formulation and quadrature rule for the elements with/without embedded 
discontinuities, (2) the elemental matrices of subdivided integration cell are assembled via transformation in a quadratic 
form, a projection procedure. In particular we would like to address the following issues: (1) ease-of-implementation in 
FE formulations (simplicity), (2) capability to produce accurate numerical solution (accuracy) and (3) well-suited for FE 
formulation (variationally consistency)

The primary contributions of this work include:

• accurate and robust numerical formulation for large displacement and rigid body contact of FSI problem
• stabilized formulation for incompressible Navier-Stokes equations
• symmetric and non-symmetric Nitsche’s method for embedded interface
• cut cell stabilization based on ghost penalty method
• projection-based adaptive Gauss quadrature using Tessellation or AMR
• second-order generalized-α time integration for fluid and structure
• second-order staggered-partitioned weakly-coupling FSI scheme

The manuscript is organized as follows. The governing equations and FSI schemes are listed in Sect. 2 at first. Following 
that, the complete variational formulation of our unfitted FSI solver is shown in Sect. 3. The proposed numerical integration 
scheme is discussed in Sect. 4. The error analysis is conducted in Sect. 5. Subsequently, numerical examples and validation 
results are presented in Sect. 6. Finally, we make the concluding remarks in Sect. 7.

2. Governing equations and boundary conditions

2.1. Incompressible Navier-Stokes equations

The implemented incompressible Navier-Stokes equation is shown in Eq. (1),

ρ f
(∂u f

+ u f · ∇u f
)

− ∇ · σ {u f , p} = ρ f g f ∀x ∈ � f (t) (1a)

∂t
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∇ · u f = 0 ∀x ∈ � f (t) (1b)

u f = ũ f ∀x ∈ �
f
D(t) (1c)

σ {u f , p} · n f = h̃
f ∀x ∈ �

f
H (t) (1d)

u f = u f
0 ∀x ∈ � f (0) (1e)

where ρ f , u f , u f
0 , g f , ũ f , h̃

f
and n f respectively are the fluid density, fluid velocity vector, initial fluid velocity vector, 

fluid unit body force vector, prescribed fluid velocity, prescribed fluid traction and outward normal vector of fluid domain. 
The superscript ( f ) refers to the variables associated with fluid. The spatial domain, Dirichlet and Neumann boundaries 
respectively are denoted as �, �D and �H , where �D and �H are complementary subsets of �, � = �D ∪�H and �D ∩�H =
Ø. The Dirichlet and Neumann boundary conditions respectively are imposed along �D and �H as shown below.

u f = ũ f ∀x ∈ �
f
D(t) (2a)

h f = h̃
f ∀x ∈ �

f
H (t) (2b)

where h = σ · n refers to the surface stresses. σ is the Cauchy stress tensor and defined as

σ {u f , p} = −p I + 2μD(u f ) (3a)

D(u f ) = 1

2

[
∇u f + (∇u f )′

]
(3b)

The stress tensor is written as the summation of its isotropic and deviatoric tensor (D(u f )) parts, where the prime sym-
bol represents a transpose operator. Here, p, μ and I refer to the fluid pressure, dynamic viscosity and identity matrix 
respectively.

2.2. Rigid-body dynamics

The equation governing the dynamics of a rigid body is simply implemented as Eq. (4).

msas + cs us + ks ds = hs ∀x ∈ �s(t) (4)

as = ∂2ds

∂t2
; us = ∂ds

∂t

cs = 2ξ
√

ksms; ks = 4π2 f 2
nms

Ur = U/( fny D); ms = m∗(0.25π D2Lρ f )

where ξ , m∗ , f n = [ fnx, fny]′ , D and L are the damping ratio, mass ratio, structural frequency vector, diameter of cylinder 
and spanwise length of cylinder respectively. The superscript (s) denotes the variables of solid. cs and ks are the damping 
and stiffness coefficients respectively. The reduced velocity of cylinder, Ur , is defined based on the structural frequency in 
the transverse direction, fny . In the present formulation, it is assumed that the structural frequencies in transverse and 
streamwise direction are identical, fnx/ fny = 1.0. hs = [hs

x, hs
y]′ represents the external force exerted on the cylinder surface.

2.3. Interface constraints and fluid-structure interaction

To couple the fluid and the structure dynamics, both the velocity and the traction constraints should be satisfied. The 
velocity constraint requires the fluid and the structure interfaces align with each other and move at the same velocity 
in Eq. (5a). On the other hand, the equilibrium of stresses, as shown in Eq. (5b), has to be enforced along the fluid-
structure interface � f s to satisfy the traction constraint, where n f = −ns . The superscript ( f s) denotes the quantity of a 
fluid-structure interface.

u f = us ∀x ∈ � f s(t) (5a)

σ f · n f + σ s · ns = 0 ∀x ∈ � f s(t) (5b)

=⇒ h f + hs = 0 ∀x ∈ � f s(t)

The fluid and structural governing equations can be coupled in either monolithic or staggered-partitioned scheme. In 
monolithic/fully-implicit scheme [34], the variables of both fluid and structure are solved indiscriminately and simultane-
ously. The monolithic formulation is robust, stable at relative large time steps, and its solution converges rapidly. Albeit 
monolithic schemes have the energy conservation property, their computational cost is high and typically require a sig-
nificant recast in fluid and structural solvers. Moreover, the rigid-body impact and fluid flow take place at different time 
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scale. It imposes an inefficiency to the monolithic formulation. On the other hand, the staggered-partitioned scheme can be 
conveniently implemented to existing fluid and structural solvers, in which the fluid flow and structure dynamics are solved 
separately. The staggered-partitioned schemes can be further classified into strongly-coupled [35–37] or weakly-coupled 
schemes [38,39]. In this work, a staggered-partitioned, weakly-coupled and second-order accurate scheme in Dettmer & 
Perić (2013) [38] is implemented. The pseudocode of the implemented staggered scheme in each time step is briefly sum-
marized below

In each time step (t):

1. predict the traction force on the structure: hs
p(t + 1) = 2 hs(t) − hs(t − 1)

2. find the solution to the structure equation for the next time step, us(t + 1) and ds(t + 1)

3. update the location and velocity of the structure in fluid and find the solution to the Navier-Stokes equation for 
the next time step, u f (t + 1) and h f (t + 1)

4. relax the traction force along interface � f s(t + 1): hs(t + 1) = −γ f sh f (t + 1) + (1 − γ f s)hs
p(t + 1)

where γ f s is the relaxation parameter. The predicted traction force hs
p(t + 1) is a first-order approximation. For the detailed 

algorithm of this coupling scheme and the second-order predicted traction force, please refer to Dettmer & Perić (2013) [38].

2.4. Integration in time

The second-order accurate and unconditional stable generalized-α method [40] and [41] are implemented in time in-
tegration for both structural equation and Navier-Stokes equations. The detailed formulation for structural equation can be 
summarized as,

ds
n+1 = ds

n + 
tus
n + 
t2((1

2
− βs)as

n + βsas
n+1

)
(6a)

us
n+1 = us

n + 
t
(
(1 − γ s)as

n + γ sas
n+1

)
(6b)

ds
n+αs

f
= (1 − αs

f )ds
n + αs

f ds
n+1 (6c)

us
n+αs

f
= (1 − αs

f )us
n + αs

f us
n+1 (6d)

as
n+αs

m
= (1 − αs

m)as
n + αs

mas
n+1 (6e)

Fs
n+αs

f
= (1 − αs

f )Fs
n + αs

f Fs
n+1 (6f)

where ds
n , us

n and as
n refer to the displacement, velocity and acceleration of cylinder at time t = n. The values of αs

m , αs
f , γ s

and βs are defined by Chung & Hulbert (1993) [40] in Eq. (7) to ensure the characteristics of unconditionally stability and 
second-order accuracy.

αs
m := 2ρs∞ − 1

ρs∞ + 1
; αs

f := ρs∞
ρs∞ + 1

(7a)

γ s := 0.5 + αs
m − αs

f ; βs := 0.25(1 + αs
m − αs

f )
2 (7b)

Similarly, the second-order accurate and unconditionally stable generalized-α method for Navier-Stokes equation is listed 
below,

u f
n+1 = u f

n + 
t
[
(1 − γ f )

∂u f
n

∂t
+ γ f ∂u f

n+1

∂t

]
(8a)

u f

n+α
f
f

= (1 − α
f
f )u f

n + α
f
f u f

n+1 (8b)

∂u f

n+α
f

m

∂t
= (1 − α

f
m)

∂u f
n

∂t
+ α

f
m

∂u f
n+1

∂t
(8c)

α
f

m := 0.5
3 − ρ

f∞
1 + ρ

f∞
; α

f
f := 1

1 + ρ
f∞

; γ f := 0.5 + α
f

m − α
f
f (8d)

Here ρs∞ ∈ [0,1] and ρ f∞ ∈ [0,1] respectively are the spectral radius, which control the amount of numerical high-frequency 
damping in the temporal schemes. In this work. ρs∞ = ρ

f∞ = 0.9 are chosen for all numerical simulations.
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3. Variational form of unfitted stabilized finite element formulation

The outline of the stabilized FE formulation of Navier-Stokes equation with embedded interfaces is summarized in Eq. (9), 
where AG([v f , q], [u f

h , ph]) and LG([v f , q], [u f
h , ph]) are the bilinear and linear forms derived from classical Galerkin 

method. AS ([v f , q], [u f
h , ph]) attributes to the Petrov-Galerkin formulation, which enables equal approximation function 

spaces between the velocity and the pressure. AN ([v f , q], [u f
h , ph]) is the terms of symmetric & non-symmetric Nitsche’s 

methods for weakly imposing Dirichlet boundary condition along an embedded interface. In addition, AG P ([v f , q], [u f
h , ph])

is the ghost penalty terms to minimize the jump of solutions across the edges of cut cells.

AG([v f ,q], [u f
h , ph]) +AS([v f ,q], [u f

h , ph]) +AN([v f ,q], [u f
h , ph])

+AG P ([v f ,q], [u f
h , ph]) = LG([v f ,q], [u f

h , ph]) (9)

The detailed formulations of Eq. (9) are presented in the subsequent sections.

3.1. Stabilized variational form of Navier-Stokes equation

The discrete variational form of the incompressible Navier-Stokes equation in Eq. (1) in a mixed finite element formula-
tion using the classical Galerkin method, as shown in Eq. (10).

AG([v f ,q], [u f
h , ph]) = LG([v f ,q], [u f

h , ph])

=⇒
∫

� f (t)

[
v f ρ f

(∂u f
h

∂t
+ (u f

h · ∇)u f
h

)
− ∇v f σ {u f

h , ph} − v f ρ f g f
]
d�

−
∫

�
f
H (t)

v f h̃
f
h d� −

∫

�
f
H(out)(t)

v f (−μ(∇u f
h )′)d�

+
∫

� f (t)

q[∇ · u f
h ]d� = 0 ∀[v f ,q] ∈ V̂h × Q̂h ⊂ V̂ × Q̂ (10)

where [v f , q]′ is the vector of test functions for the velocity and pressure of fluid. The boundary integral term ∫
v f (−μ(∇u f

h )′)d� is a correction term proposed by Heywood et al. (1996) [42] for “do-nothing” outflow boundary con-

dition along the outflow boundary � f
out . The vector-valued trial and test function spaces V and V̂ of velocity are defined 

as

V = {v f ∈H1(� f (t)) : v f = ṽ f ∀x ∈ �
f
D(t)} (11a)

V̂ = {v f ∈H1(� f (t)) : v f = 0 ∀x ∈ �
f
D(t)} (11b)

On the other hand, the scalar-valued trial and test function spaces Q and Q̂ of pressure are defined as

Q = {q ∈ H1(� f (t)) : q = p̃ ∀x ∈ �
f
D(t)} (12a)

Q̂ = {q ∈ H1(� f (t)) : q = 0 ∀x ∈ �
f
D(t)} (12b)

where H1 refers to the Sobolev space, in which [(v f )2, q2] and [|∇v f |2, |∇q|2] have finite integrals within � f (t) and 
allows discontinuous derivatives. Their corresponding discrete function spaces are denoted with subscript (h), e.g., Q̂h . A 
residual-based stabilization technique, Petrov-Galerkin method [43–46], in Eq. (13) is implemented to minimize the residual 
of equation system in a weak/integral sense. Here G and C I are respectively element cotravariant metric tensor and a 
positive constant independent upon mesh size [47].

AS([v f ,q], [u f
h , ph]) =

nel∑
e=1

∫

� f (t)

τm

[
ρ f (u f

h · ∇)v f − μ∇2 v f + ∇q
]

[
ρ f (

∂u f
h

∂t
+ (u f

h · ∇)u f
h − g f ) − μ∇2u f

h + ∇ph

]
d�

+
nel∑

e=1

∫
f

τcρ
f (∇ · v f )(∇ · u f

h )d� ∀[v f ,q] ∈ V̂h × Q̂h ⊂ V̂ × Q̂ (13)
� (t)
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Fig. 1. Schematic diagrams of embedded interface with ghost penalty terms. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

τm = [(2ρ f


t

)2 + (ρ f )2u f
h · Gu f

h + C I (μ)2G : G
]−0.5

τc = (tr(G)τm)−1; G = ∂ξ ′

∂x

∂ξ

∂x

3.2. Nitsche’s method

The symmetric & (penalty-free) non-symmetric Nitsche’s methods are shown in Eq. (14).

AN([v f ,q], [u f
h , ph]) = γ1

∫

� f s(t)

v f (u f
h − ũ f

h )d�

−
∫

� f s(t)

v f (σ {u f
h , ph} · n f )d� − γ2

∫

� f s(t)

(σ {v f ,q} · n f )(u f
h − ũ f

h )d� (14)

∀[v f ,q] ∈ V̂h × Q̂h ⊂ V̂ × Q̂

Either the symmetric-variant γ2 = 1 or non-symmetric-variant γ2 = −1 can be implemented. The penalty term is chosen 
within an appropriate range γ1 ∈ [μ 102

L , μ 103

L ] for symmetric-variant based on Benk (2012) [48], where L is the character-
istic element length, or γ1 = 0.0 for non-symmetric-variant based on Burman (2012) [49]. As long as the numerical solution 
convergences to the unique solution u f

h ≈ ũ f
h , the first and third penalty terms vanish.

3.3. Ghost penalty method

The cut cell is demarcated by an embedded interface, e.g., the blue circle in Fig. 1, into a fluid domain and a fictitious 
domain respectively. The embedded interface is represented by a level-set function ||x − xc||L2 − 0.5D , where xc and D
respectively denote the coordinates of the center of the cylinder and the diameter of a cylinder. The subscript L2 denotes 
the Euclidean 2 norm. If the solution to the level-set function is larger than zero, it indicates the fluid domain and vice 
versa. If the physical part is very small, some basis functions have little support inside the physical domain. It leads to the 
large system matrix condition numbers. The residual-based ghost penalty method [29] is implemented along the edges of 
cut cells, the red edges in Fig. 1, to alleviate the jumps of solutions. A comprehensive study of the performance of ghost 
penalty terms was reported by Dettmer et al., 2016 [24]. The specific terms are listed in Eq. (15).

AG P ([v f ,q], [u f
h , ph]) = βu

gpμG1(v f , u f
h ) + β

p
gpμ

−1 g3(q, ph) (15)

∀[v f ,q] ∈ V̂h × Q̂h ⊂ V̂ × Q̂

gφ(q, ph) =
e∑

k=1

l2(α−1)+φ

k

∫

� f (t)

[[ ∂αq

∂n f (α)
]][[ ∂α ph

∂n f (α)
]]dlk

Gφ(v f , u f
h ) =

e∑
k=1

d∑
i=1

l2(α−1)+φ

k

∫

� f (t)

[[ ∂α v f
(i)

∂n f (α)
]][[∂

αu f
h(i)

∂n f (α)
]]dlk
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where the penalty parameters is chosen as βu
gp = β

p
gp = 0.02 [24] for the numerical examples in this work. The superscripts 

(u) and (p) respectively refer to velocity and pressure. The subscript (gp) shows that these terms attribute to ghost penalty 
terms. e and d respectively are the number of edges of cut cell imposed with ghost penalty terms and the dimension of 
problem. α, φ and l are order of derivative, the notation parameter and element characteristic length respectively. [[·]]
denotes a jump of solution across the element edge.

Therefore, the overall numerical formulation of Navier-Stokes equations with embedded interface and the ghost-penalty 
stabilization is summarized as,

∫

� f (t)

[
v f ρ f

(∂u f
h

∂t
+ (u f

h · ∇)u f
h

)
− ∇v f σ {u f

h , ph} − v f ρ f g f
]
d�

−
∫

�
f
H(out)(t)

v f (−μ(∇u f
h )′)d� +

∫

� f (t)

q[∇ · u f
h ]d�

+
nel∑

e=1

∫

� f (t)

τm

[
ρ f (u f

h · ∇)v f − μ∇2 v f + ∇q
]

[
ρ f (

∂u f
h

∂t
+ (u f

h · ∇)u f
h − g f ) − μ∇2u f

h + ∇ph

]
d�

+
nel∑

e=1

∫

� f (t)

τcρ
f (∇ · v f )(∇ · u f

h )d� + γ1

∫

� f s(t)

v f (u f
h − ũ f

h )d�

−
∫

� f s(t)

v f (σ {u f
h , ph} · n f )d� − γ2

∫

� f s(t)

(σ {v f ,q} · n f )(u f
h − ũ f

h )d�

+
e∑

k=1

l2(α−1)+φ

k

∫

� f (t)

[[ ∂αq

∂n f (α)
]][[ ∂α ph

∂n f (α)
]]dlk

+
e∑

k=1

d∑
i=1

l2(α−1)+φ

k

∫

� f (t)

[[ ∂α v f
(i)

∂n f (α)
]][[∂

αu f
h(i)

∂n f (α)
]]dlk

=
∫

�
f
H (t)

v f h̃
f
h d� ∀[v f ,q] ∈ V̂h × Q̂h ⊂ V̂ × Q̂ (16)

4. Numerical integration (PAGQ)

In the proposed numerical integration, the cut cell is adaptively subdivided into smaller integration cells, based on the 
projection approach in a quadratic form transformation [50,51]. The technique of projection in a quadratic form is one 
of the cornerstones in applied mathematics and widely-accepted in many scientific domains, e.g., machine learning [52–
55], reduced order model [56–60], eigenvalue analysis [61] and finite element method [62,63] to name a few. Hence this 
proposed numerical scheme is termed as a projection-based adaptive Gauss quadrature, PAGQ, in this article. In PAGQ, the 
FE formulation and Gauss quadrature rule in sub-divided cells are identical to the elements without an embedded interface. 
Whereas, the assembly procedure is based on the projection approach.

The detailed algorithm of PAGQ is demonstrated using a general FE formulation subsequently. Assuming the domain is 
discretized by the structured quadrilateral elements in Fig. 2, the corresponding discrete variational form of a general partial 
differential equation (PDE) of a single-variable problem can be derived as

A(v,dh) = L(v) (17)

A(v,dh) =
∫

�

[L v]′ D [Ldh]d�

L(v) =
∫

[v ′b]d� +
∫

[v ′h̃h]d�
� �H



8 B. Liu, D. Tan / Journal of Computational Physics 413 (2020) 109461
Fig. 2. Illustration of the general concept of PAGQ in a bilinear quadrilateral element.

where A(v, dh) and L(v) are respectively bilinear and linear functionals. In Eq. (17), v , dh , b, h̃h and D are the test function, 
the nodal value, the volume source, the prescribed traction vector and the coefficient matrix respectively. L is a differential 
operator. The strain matrix is B = LN , in which N is a trial function (shape function) vector. In Bubnov-Galerkin method, 
the test function vector is chosen as trial function vector, v = N . Hence the elemental stiffness matrix and force matrix of 
the cut cell becomes,

K c =
∫

�

[B ′
c D Bc]d� (18a)

F c =
∫

�

[N ′
c b]d� +

∫

�H

[N ′
c h̃h]d� (18b)

where the subscript (c) refers to the matrices and vectors of a cut cell. The standard Gauss quadrature rule is implemented 
in each integration cell with respect to its dummy nodes, the corners of each quadrilateral integration cell, as shown in the 
detailed view of Fig. 2.

Similar to the cut cell, the stiffness matrix and force vector of an integration cell can be formulated as

K s =
∫

�

[B ′
s D Bs]d� (19a)

F s =
∫

�

[N ′
s b]d� +

∫

�H

[N ′
s h̃h]d� (19b)

where the subscript (s) refers to the matrices of an integration cell. The second term on the right-hand side of Eq. (19b)
is a line integral. As demonstrated in Fig. 2, the matrices of integration cells are mapped via a transformation tensor T
and assembled to form the reconstructed elemental matrices of a cut cell, e.g., K r

c , where the superscript (r) denotes a 
reconstructed matrix.

Two equivalent computational sequences, Algorithm 1 and 2, are applicable, where the superscript (as) denotes an as-
sembled matrix based on the assembly procedure in the standard FE formulation.

Algorithm 1 Transformation-assembly.
1: sub-divide cut cell into integration cells
2: for i=no. of integration cell do
3: construct T for ith integration cell, Eq. (21a)
4: Gaussian quadrature for ith integration cell
5: K r

s = T ′ · K s · T , Eq. (23a) and (23b)
6: sum up as K r

c+ = K r
s , Eq. (24a) and (24b)

7: end for

4.1. Transformation tensor

A detailed construction procedure of T is demonstrated in Fig. 3. For instance, one would like to approximate the scalar 
values V at Gauss points inside an integration cell, the solid-circles in Fig. 3, from the dummy nodes, s j . Simultaneously, 
the values on dummy nodes can be approximated from the physical nodes, ni . As a result, the scalar value at a Gauss point 
xk , V (xk), can be approximated from the physical nodes as follows.
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Algorithm 2 Assembly-transformation.
1: sub-divide cut cell into integration cells
2: construct T as (rectangular tensor) for all integration cells, Eq. (21a)
3: for i=no. of integration cell do
4: Gaussian quadrature for ith integration cell
5: assembly as K as

s
6: end for
7: K r

c = T as′ · K as
s · T as , Eq. (25a) and (25b)

Fig. 3. Mapping procedure between integration cell and cut cell.

V (xk) = Ns( j)(xk)Nc(i)(s j)dc(ni)

= Ñi(xk)dc(ni) (20)

where Ñ(x) is a composed trial function vector and the Einstein summation convention is used. The N s and N c respectively 
are the shape function matrices associated with the dummy nodes and physical nodes. Hence a transformation tensor T
can be defined in Eq. (21a). The column j of T refers to the weights from a physical node n j to the dummy nodes sk of a 
cut cell. Therefore, Ñ can be accordingly re-casted in Eq. (21b).

Tkj = Nc( j)(sk) (21a)

Ñi j = Ns(k)(xi)Tkj (21b)

Hence the corresponding matrix form of T can be written as

T = [N ′
c(n)(s1), N ′

c(n)(s2), ..., N ′
c(n)(si)]′

=

⎡
⎢⎢⎢⎣

Nc(n1)(s1) Nc(n2)(s1) . . . Nc(n j)(s1)

Nc(n1)(s2) Nc(n2)(s2) . . . Nc(n j)(s2)

...
...

. . .
...

Nc(n1)(si) Nc(n2)(si) . . . Nc(n j)(si)

⎤
⎥⎥⎥⎦ (22)

Subsequently the T is used to map the elemental matrices between the bases of the integration cells and their cut cell, as 
shown in Eq. (23).

K r
s(i j) = Tki Ks(kl)Tl j (23a)

F r
s(i) = Tki Fs(k) (23b)

where K r
s(i j) and F r

s(i) are the reconstructed elemental matrices of an integration cell in the component form.
Subsequently, the reconstructed elemental matrices of a cut cell is simply formed by a summation operation, as shown 

in Eq. (24).
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Fig. 4. Implementation of PAGQ: (a) Tessellation; (b) AMR.

K r
c(i j) =

en∑
n=1

K r
s(i j)(n) =

en∑
n=1

Tki(n)Ks(kl)(n)Tl j(n) (24a)

F r
c(i) =

en∑
n=1

F r
s(i)(n) =

en∑
n=1

Tki(n)Fs(k)(n) (24b)

where en parameter is the total number of integration cells in a cut cell. The above demonstrates the computational proce-
dures in Algorithm 1. The assembly procedure can be performed before transformation operation, as shown in Algorithm 2. 
The corresponding transformation operation in Algorithm 2 is shown in Eq. (25).

K r
c(i j) = T as

ki K as
s(kl)T

as
lj (25a)

F r
c(i) = T as

ki F as
s(k) (25b)

where T as is a rectangular transformation tensor in this case, in which the number of rows and columns are respectively the 
total number of dummy nodes and physical nodes. Therefore, PAGQ can be implemented via either Tessellation or AMR, as 
demonstrated in Fig. 4a and Fig. 4b respectively. In terms of Tessellation in Fig. 4a, the embedded discontinuity is precisely 
aligned with the edge of integration cells and the embedded interface is computed in line integrals. For the AMR in Fig. 4b, 
the integration cells are continuously refined around the embedded interface. In such a way, a large portion of the cut cell 
is precisely integrated without embedded discontinuities. In the infinitesimal integration cells cut by the interface, a line 
integral is reformulated in Eq. (26) based on Rätz & Voigt, A. (2006) [64], Li et al. (2009) [65] and Nguyen et al. (2017) [66].∫

f (x)d� =
∫

f (x)Hd� ≈
∫

f (x)φd� (26a)
� K K
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∫

�

f (x)d� =
∫

K

f (x)δ�d� ≈
∫

K

f (x)|∇φ|d� (26b)

∫

�

f (x) · nd� =
∫

K

f (x) · nδ�d� ≈ −
∫

K

f (x) · ∇φd� (26c)

where f (x), δ� and φ are respectively a general scalar function, a Dirac delta function and a phase-field function. For the 
detailed discussion of this reformulation, please refer to Nguyen et al. (2017) [66].

4.2. Characteristics of PAGQ

In this section, the characteristics of PAGQ are discussed: (1) the partition of unity property, (2) the adaptive Gauss 
quadrature (GQ), (3) the projection in a quadratic form and (4) the order reduction approximation.

Partition of unity property: Partition of unity is one of the fundamental properties in FE approximation. It can be simply 
proven the composed trial function Ñ in Sect. 4.1 satisfies the partition of unity property in Eq. (27).

∑
i

Ñi(α) =
∑
i, j

N j(α)Ni(β j) =
∑

i

Ni(α) = 1.0 (27)

Adaptive Gauss quadrature: The mathematical derivation in Eq. (28) shows the reconstructed elemental matrices, e.g., K r
c , 

exactly recovers the elemental matrices obtained by standard Gauss quadrature of a cut cell, e.g., K c .

K r
c =

en∑
n=1

T ′(n) · K s(n) · T (n)

=
en∑

n=1

T ′(n) ·
∫

�

[B ′
s(n) D Bs(n)]d� · T (n)

=
en∑

n=1

∫

�

[Ñ
′
(n)L′ D LÑ(n)]d�

=
en∑

n=1

gp∑
g=1

[B̃
′
(n, g) D B̃(n, g)| J (n, g)|W (g)]

=
en·gp∑
k=1

[B̃
′
(k) D B̃(k)| J (k)|W (k)]

=
∫

�

B̃
′

D B̃d�

= K c (28)

B̃(k) = LÑ(k), J (k) and W (k) are the composed strain vector, the Jacobian matrix and the Gauss integration weights re-
spectively. The value of en · gp is the total number of the Gauss integration points within a cut cell. en and gp respectively 
are the number of integration cells and the number of Gauss points within an integration cell.

It should be noted that Bs is computed over a continuous function space in an integration cell. On the other hand, 
its solutions are approximated from the nodes of its parent element, the cut cell, through the quadratic transformation. It 
guarantees an accurate approximation of the gradients within the integration cell. Therefore, PAGQ can be considered as an 
adaptive variation of the standard Gauss quadrature numerical integration.

Quadratic form: It is known that a matrix, e.g., K s in Eq. (29), can be mapped back to its own basis function space using 
its unit basis vectors, e.g., e1 = [1, 0, 0]′ in Cartesian coordinate system of R3.

Ks(i, j) = e′
i · K s · e j (29)

Similarly, it can be projected to other basis function spaces, provided an appropriate transformation tensor is defined. In 
PAGQ, T is constructed based on its trial functions in Eq. (21a), such that the nodal values and their residuals are re-
projected in the basis function space of the cut cell. Because the FE formulation results into a symmetric matrix system,1

1 In Navier-Stokes equation, the resultant stiffness matrix K can be subdivided into symmetric matrix blocks.
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Fig. 5. Schematic diagram of convergence analysis: (a) Uniformly refinement by PAGQ; (b) Embedded discontinuity along the green circle. Non-harmonic 
Dirichlet boundary condition is applied along the east, west, north and south boundaries uewns .

which can always be transformed into a quadratic form, the proposed PAGQ is mathematically-robust and consistent with 
FE formulation.

Order reduction: PAGQ can be considered as an order reduction technique too, which projects a high dimensional matrix 
to a lower dimensional one with an appropriate transformation tensor T . In this lower dimensional space, the basis vector 
is the trial function in FE formulation. In Algorithm 2, the matrices of integration cells are assembled at first. The resultant 
K as

s represents the approximation of solutions around this portion of embedded interface with enough large number of 
degree-of-freedoms (DoFs). In this case, T as is defined as a rectangular transformation matrix.

5. Convergence analysis

The convergence analysis of the proposed numerical integration scheme PAGQ is presented in this section. The Poisson’s 
equation in Eq. (30) is employed and discretized over a two-dimensional square domain � with quadrilateral elements. The 
non-harmonic Dirichlet boundary condition is imposed along the computational boundary �.

−
u = f ∀x ∈ � (30)

u = ũ ∀x ∈ �

The discrete variational form of Eq. (30) can be written as∫

�

∇v · ∇uh d� =
∫

�

v f d� +
∫

�

v∇uh · n d� ∀v ∈ Qh ⊂ Q (31)

where v is the test function. The convergence analysis is conducted in a two-dimensional square domain of size x ∈
[(−2D, 2D), (−2D, 2D)] in Fig. 5, where D = 50 in this case is the diameter of a cylinder and represents the character-
istic length.2 The prescribed values ũ is imposed along its boundary. The computational domain is uniformly discretized 
with quadrilateral elements in different resolutions, e.g., 5 × 5, 10 × 10 and 320 × 320. The proposed PAGQ numerical inte-
gration scheme is applied uniformly in the computational domain with five times of refinement. A designated test problem 
with an exact solution is employed to check the convergence error. The following manufactured function in Eq. (32) is taken 
as the exact solution. By substituting Eq. (32) into Eq. (30), it can be computed that the value of the source term should be 
f = 0.02π2cos(0.01πx)cos(0.01π y).

ue(x) = 100cos(0.01πx)cos(0.01π y) (32)

In Fig. 5a, the elements are uniformly refined five times by the proposed PAGQ. Subsequently, the obtained convergence 
rate is compared with the standard Gauss quadrature rule. In Fig. 5b, an embedded discontinuity ũn = 100 is weakly im-
posed using symmetric & non-symmetric Nitsche’s methods along the green circle of diameter D = 50. Its convergence rate 
is compared with those of the standard Gauss quadrature rule and PAGQ without embedded discontinuities. The numerical 
formulation of a Poisson’s equation with an embedded interface is shown in Eq. (33).∫

�

∇v · ∇uh d� + r1

he

∫

�

v(u − ũ) d� −
∫

�

v∇u · n d�

2 The characteristic length is scaled up in convergence analysis, such that the minimum size of the integration cell after five times of refinement is in 
the order of magnitude 1 × 10−3.



B. Liu, D. Tan / Journal of Computational Physics 413 (2020) 109461 13
Fig. 6. Convergence analysis of a Poisson’s equation with respect to Eulerian grid refinement: (a) Convergence rates of PAGQ and symmetric & non-symmetric 
Nitsche’s method; (b) Contour plot of PAGQ; (c) Contour plot of PAGQ with embedded interface.

= r2

∫

�

∇v · n(u − ũ) d� +
∫

�

v f d� +
∫

�

v∇uh · n d� ∀v ∈ Qh ⊂ Q (33)

where r1 = 1000 and he respectively are the penalty parameter and the element size. In the symmetric and non-symmetric 
Nitsche’s method, the value of r2 is 1 and −1 respectively. The obtained convergence rates are presented in Fig. 6a, where 
L2 and he denote the Euclidean 2 norm and the element length respectively. L2 norm is computed based on Eq. (34), in 
which E and ϕ are the relative error vector and measured quantity respectively. The superscript (n) and subscript (ref ) 
respectively denote the number of background nodes along a side and the reference solution. In the assessment of standard 
Gauss quadrature (GQ) and PAGQ, the exact solution is taken as the reference solution. To assess the implemented PAGQ 
with Nitsche’s method, the solution to the case with the highest mesh resolution is chosen as the reference solution. The 
order of convergence is computed based on E in Eq. (35).

||En
ϕ ||L2 =

√
(En

ϕ)′ · En
ϕ ; En

ϕ(i) = ϕ(i) − ϕref (x(i)) (34)

order = log(||En
ϕ ||L2/||E2n

ϕ ||L2)

log(hn
e/h2n

e )
(35)

In Fig. 6a, it shows that the convergence of PAGQ is optimal and the convergence rate is exactly 2.0. Its corresponding 
contour plot is shown in Fig. 6b. When an embedded interface is weakly imposed in the domain using either symmetric 
or non-symmetric Nitsche’s method, the convergence rate of PAGQ becomes sub-optimal, approximately 1.7. No difference 
is observed between the convergence rates of the symmetric & non-symmetric Nitsche’s method. The observed sub-optimal 
convergence rate agrees with the findings reported by Schilinger et al. (2016) [25] and Burman (2012) [49]. The imposed 
discontinuity can be observed prominently from the discontinuous contour of u in the center of the domain in Fig. 6c.

The same Poisson’s equation and problem setup are used to assess the accuracy of PAGQ by comparing the L2 norms 
between the standard Gauss quadrature (GQ), the tessellation, PAGQ numerical integration schemes. The results in Table 1
shows that the accuracy of the proposed PAGQ is similar to the classical tessellation numerical integration scheme, but 
higher than the standard GQ scheme.
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Table 1
Error introduced in the approximated solution by different 
integration schemes.

Resolution Standard GQ Tessellation PAGQ

10 × 10 6.9114 14.5474 17.8756
20 × 20 1.7269 3.6869 4.4630
40 × 40 0.4317 0.9227 1.1153
80 × 80 0.1079 0.2309 0.2788

Fig. 7. A cylinder in two-dimensional flow: (a) the schematic diagram of a cylinder; (b) the resolution of the mesh used for the simulation of a cylinder in 
two-dimensional flow.

Table 2
Flow around a stationary circular cylinder: re-circulation length 
(L/D) and drag coefficient (Cd) for Re = 20 and 40.

L/D Cd

Re = 20 Tritton [67] — 2.22
Coutanceau and Bouard [68] 0.73 —
Calhoun [69] 0.91 2.19
Russell and Wang [70] 0.94 2.13
Li et al. [71] 0.931 2.062
Present (T) 0.94 2.171
Present (A) 0.927 2.149

Re = 40 Tritton [67] — 1.48
Coutanceau and Bouard [68] 1.89 —
Calhoun [69] 2.18 1.62
Russell and Wang [70] 2.29 1.60
Li et al. [71] 2.24 1.569
Present (T) 2.27 1.608
Present (A) 2.22 1.561

6. Numerical examples and validations

In this section, a number of numerical examples are presented to assess the accuracy and robustness of the derived nu-
merical formulations. The performed simulations are (a) flow past a stationary cylinder, (b) flow past a rotating cylinder, (c) 
flow past a freely-vibrating cylinder, (d) a freely-falling particle, (e) six freely-falling particles and (f) flow past a stationary 
sphere. In all numerical examples, both symmetric & (penalty-free) non-symmetric Nitsche’s methods are assessed. There is 
no significant discrepancy of accuracy between the symmetric & non-symmetric Nitsche’s methods is observed in the nu-
merical examples. The Tessellation-based PAGQ and AMR-based PAGQ are validated with literature and used interchangeably. 
In particular, the AMR-based PAGQ is used in the case of a stationary sphere in three-dimensional flow.

6.1. Flow past a stationary cylinder

The flow past a stationary cylinder at Re ≤ 200, is a classical benchmark example. Its schematic diagram is shown in 
Fig. 7a, where u∞ = 1.0, D = 1.0, Lu = 50D , Ld = 50D and H = 100D denote the free stream velocity, the diameter of 
cylinder, the upstream length, the downstream length and the height of computational domain. The mesh used for the 
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Table 3
Flow around a fixed circular cylinder: mean drag coefficient (Cmean

d ), 
r.m.s. lift coefficient (Crms

l ) and Strouhal number (St) for Re = 100
and 200.

Cmean
d Crms

l St

Re = 100 Braza et al. [72] 1.364 ±0.25 —
Liu et al. [73] 1.350 ±0.339 0.164
Calhoun [69] 1.330 ±0.298 0.175
Russell and Wang [70] 1.380 ±0.300 0.169
Li et al. [71] 1.301 ±0.324 0.167
Kadapa et al. [74] 1.390 ±0.339 0.166
Present (T) 1.365 ±0.301 0.164
Present (A) 1.334 ±0.313 0.164

Re = 200 Braza et al. [72] 1.40 ±0.75 —
Liu et al. [73] 1.310 ±0.69 0.192
Calhoun [69] 1.172 ±0.594 0.202
Russell and Wang [70] 1.390 ±0.50 0.195
Li et al. [71] 1.307 ±0.419 0.192
Kadapa et al. [74] 1.42 ±0.594 0.194
Present (T) 1.372 ±0.648 0.194
Present (A) 1.365 ±0.655 0.194

Fig. 8. ωz contour and streamline plot of a fixed circular cylinder: (a) Re = 20; (b) Re = 40.

Fig. 9. ωz contour and streamline plot of a fixed circular cylinder: (a) Re = 100; (b) Re = 200.
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Fig. 10. Rotating cylinder in cross-flow at Re = 200 and a = 1.0: (a) Schematic diagram; (b) ωz contour and streamline plot; (c) Time trace of lift coefficient.

simulation of a stationary, rotating or vibrating cylinder in Sect. 6.1, 6.2 and 6.3 respectively is shown in Fig. 7b. The spatial 
domain is discretized with quadrilateral elements. The total number of grids is 63984. Traction free boundary condition 
is imposed on the domain boundaries �o , �t and �b . The fluid density ρ f = 1.0, dynamic viscosity μ = 0.01 and time 
step dt = 0.01 are chosen for the simulations. The obtained numerical results using both Tessellation (T) and AMR (A) are 
compared with literature in Table 2 and 3. The obtained numerical results from the Tessellation-based PAGQ and AMR-based 
PAGQ agree well with literature. The corresponding contour of z-component vorticity ωz are plotted in Fig. 8 and 9.

6.2. Flow past a rotating cylinder

To simulate a rotating cylinder, a prescribed velocity ũ is imposed along the embedded interface. Its schematic diagram 
is shown in Fig. 10a. The value of ũ is computed as [a(0.5D)]n, where a = 1.0, D = 1.0 and n respectively are the angular 
velocity, the diameter of cylinder and the unit directional vector of velocity. The proposed AMR-based PAGQ is chosen and 
applied for the simulation of a rotating cylinder. Its contour of ωz is plotted in Fig. 10b. The time trace of lift coefficient 
agrees well with results from literature [75,76], as shown in Fig. 10c.

6.3. Flow past a freely-vibrating cylinder

In this section, the Tessellation-based PAGQ is used in the benchmark examples of two types of vibrating cylinder, e.g., 
transversely-vibrating (1-DoFs) cylinder in Fig. 11a and freely-vibrating (2-DoFs) cylinder in x and y directions in Fig. 11b. 
For the transversely-vibrating cylinder cases, Re = 100, m∗ = 10.0 (mass ratio), ζ = 0.01 (damping ratio) and Ur ∈ [3,8] 
(reduced velocity) are chosen to set up the simulations. The obtained numerical results in Fig. 12a show a good agreement 
with literature [77,78]. In freely-vibrating cylinder case, the cylinder can vibrate in both x and y directions. A representative 
case at Re = 150, m∗ = 2.55, ζ = 0.0 and Ur = 5.0 is chosen for the purpose of validation. Its trajectory results in Fig. 12b 
match well with literature [78]. The contours of ωz for representative cases are plotted in Fig. 12c and 12d respectively.
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Fig. 11. Schematic diagrams of vibrating cylinder in cross-flow: (a) a transverse-vibrating (1-DoFs) cylinder; (d) a freely-vibrating (2-DoFs) cylinder.

Fig. 12. Vibrating cylinder in cross-flow: (a,c) Re = 100, m∗ = 10.0, ζ = 0.01, Ur = 7.0 and vibrating in y direction; (b,d) Re = 150, m∗ = 2.55, ζ = 0.0, 
Ur = 5.0 and vibrating in x and y directions.

6.4. Freely-falling: a single particle

The sedimentation is a classical benchmark example for fictitious domain methods. In this example, the derived numer-
ical formulation with the Tessellation-based PAGQ is used to simulate a circular particle freely-falling in the calm water 
under the gravitational force in an incompressible fluid. The particle is accelerated at rest and subsequently achieves a 
terminal velocity us

t . The chosen parameters in the simulation are m∗ = 1.25, ρ f = 1000, μ = 0.01 and D = 0.25.
The schematic diagram is shown in Fig. 13a. The subscript (e), (w) and (s) denotes the east, west and south wall 

boundary respectively. “no-slip” boundary condition is imposed on the east, west and south walls ũ f
ews = 0.0. Traction free 
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Fig. 13. A freely-falling circular particle: (a) the schematic diagram; (b) the resolution of the mesh used for the simulation of a freely-falling circular particle. 
The north n boundary is traction-free and the “no-slip” boundary condition is imposed along the rest of boundaries.

boundary condition is imposed on the output as h̃
f = 0.0. The resolution of the mesh is presented in Fig. 13b. The spatial 

domain is discretized with totally 7.16656 × 105 quadrilateral elements. The time step used in this numerical example is 
dt = 0.001. The particle falls from the rest at [x, y] = [1, 4]. The contour of ωz is plotted in Fig. 14a. The numerical results 
are compared with literature [79,80] in Fig. 14b and 14c. The obtained numerical results match well with literature.

6.5. Freely-falling: six particles

Similar to Sect. 6.4, the derived numerical formulation with Tessellation-based PAGQ is applied for the simulation of 
six particles freely-falling under the gravity. The schematic diagram is shown in Fig. 15a. The applied boundary conditions 
are identical to Sect. 6.4. However, this problem is different from the example of a single free-falling particle, because 
of the rigid-body contact and the complex interaction between particles and walls. Because no experimental results are 
available, this example is barely a qualitative demonstration. The resolution of the mesh is shown in Fig. 15b. The domain 
is discretized with 1.210944 × 106 structured quadrilateral elements. The time step taken is dt = 0.001. The width and 
height of domain are x/D = [−3D, 3D], y/D = [1D, −7D] respectively, where D = 1.0 is particle diameter. The top layer 
particles are rest at x/D = 0 at t = 0. The fluid density, dynamic viscosity, mass ratio respectively are ρ f = 1.0, μ = 0.01
and m∗ = 1.1.

A repulsive force contact model proposed by Wan & Turek (2006) [79] is implemented in this work, which generates 
repulsive forces and ensures no penetration among particle and wall. The detailed algorithm of the implemented rigid-body 
contact model in viscous fluid is presented in Eq. (36),

F p
i, j =

⎧⎪⎨
⎪⎩

0 ∀ |di, j| > D + ς
1
εp

di, j(D + ς − |di, j|)2 ∀ D � |di, j|� D + ς
1
ε′

p
di, j(D − |di, j|) ∀ |di, j|� D

(36a)

F w
i =

⎧⎪⎨
⎪⎩

0 ∀ |d∗
i | > D + ς

1
εw

d∗
i (D + ς − |d∗

i |)2 ∀ D � |d∗
i | � D + ς

1
ε′

w
d∗

i (D − |d∗
i |) ∀ |d∗

i | � D
(36b)

For particle-particle collision, the impact force F p
i, j is modeled in Eq. (36a), where εp ≈ (
h)2 and ε′

p ≈ 
h are the stiffness 
parameters for the particle-particle collision in different regimes, and 
h is the element length. The value of di, j refers to 
the center-center vector between particle i and j. The center-center distance between circular particles is |di, j |. In this arti-
cle, the particles are assumed to have an identical diameter, D . The value of ς represents the buffer range between particles 
to generate the repulsive forces and avoid the penetration. Based on the recommendation by Wan & Turek (2006) [79], the 
range of the buffer range is chosen as ς ∈ [0.5
h, 2.5
h]. On the other hand, the particle-wall impact force F w

i is modeled 
in Eq. (36b), where εw = 0.5εp and ε′

w = 0.5ε′
p refer to the stiffness parameters for particle-wall collision. In particle-wall 

collision, it is assumed that there are imaginary particles of diameter D underneath the wall and forming the wall sur-
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Fig. 14. A free-falling circular particle: (a) ωz contour plot at t = 0.4; (c) time trace of y-component velocity; (d) time trace of y-component displacement.

Fig. 15. Six freely-falling particles: (a) schematic diagram; (b) the resolution of the mesh used for the simulation of six freely-falling circular particles. The 
north n boundary is traction-free and the “no-slip” boundary condition is imposed along the rest of boundaries.
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Fig. 16. ωz contour of six free falling particles (I).

face. The center-center distance between a particle i and its nearest imaginary particle is denoted as d∗
i . In simulations of 

multiple colliding particles, the resultant impact force F i on particle i is computed in Eq. (37).

F i =
N∑

j=1, j �=i

F p
i, j + F w

i (37)

where N is the number of the particles colliding together. In this case, six particles are released simultaneously and fall 
under gravity. Complex vortex wakes are generated as particles interacting with each other and falling through the channel 
in Fig. 16 and 17. Eventually, all particles are rest at the bottom of the channel and the vortex wakes vanish.

6.6. Flow past a stationary sphere

The flow past a stationary sphere is simulated using the derived numerical formulations with AMR-based PAGQ in this 
article. The computational domain is 12D ×8D ×8D , where D = 1.0 is the diameter of sphere. The computational domain is 
discretized with 2.904 ×106 structured quadrilateral elements, as shown in Fig. 18a. The center of cylinder is at location [0.0, 
0.0, 0.0]. The Reynolds number, the fluid density, the inlet velocity and the time step are respectively Re = 300, ρ f = 1.0, 
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Fig. 17. ωz contour of six free falling particles (II).

u∞ = 1.0 and dt = 0.05. The iso-surface of vortex wake based on Q-criterion is plotted in Fig. 18b. The pressure contour 
on y-z plane is shown in Fig. 18c, in which a prominent pressure discontinuity is captured along the embedded surface 
of the sphere. The drag coefficient of the sphere at Re = 300 is compared with the results reported by Liska & Colonius 
(2017) [81], as shown in Fig. 18d

7. Conclusion

An accurate and robust numerical formulation for the application of FSI problem with large displacement and rigid-
body contact was presented. This scheme was formulated based on a stabilized finite element formulation with Nitsche’s 
methods. The Dirichlet boundary condition was weakly imposed along an embedded interface using either symmetric or 
(penalty-free) non-symmetric Nitsche’s method together with ghost penalty stabilization. A projection-based adaptive Gauss 
quadrature numerical integration scheme (PAGQ) was proposed for the numerical integration with embedded discontinu-
ity. The convergence analysis and validations were assessed in detail. Accurate numerical results were obtained in various 
numerical examples based on the proposed numerical formulations.

The key advantages of the present numerical formulations are (1) robustness for relative large time steps, large displace-
ment and rigid-body contact for two and three dimensional simulations under finite element framework; (2) accurate and 
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Fig. 18. Flow past a stationary sphere at Re = 300: (a) the three-dimensional mesh resolution x ∈ [(−2, 10), (−4, 4), (−4, 4)]; (b) the iso-surface of vortex 
cluster (Q-criterion) and the contours of ωy on x − z plane and ωz on x − y plane crossing the sphere’s center at tU/D = 80; (c) the pressure contour on 
y − z plane crossing the sphere’s center at tU/D = 80; (d) the time trace of drag coefficient.

staggered coupling of the fluid and structure solvers for the simulations involving rigid body contact in viscous fluid flow; 
(3) easy-to-implement numerical integration scheme (PAGQ) for the cut cells with embedded interface; (4) application of 
PAGQ in three-dimensional simulation with embedded interfaces.
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