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Abstract

A Nitsche stabilized finite element method is proposed for heat & mass transfer and fluid–structure interaction. The
LS/PSPG stabilization is employed to stabilize the finite element formulation. The Nitsche’s methods are employed to
eakly impose the Dirichlet condition for heat & mass transfer. An upwind term is included in Nitsche’s methods to enhance

he stability for fast moving interfaces. The Ghost penalty method is employed to control the jumps across the cut cells. The
rojection-based adaptive Gauss quadrature (PAGQ) scheme is used for the numerical integration of the discontinuous function.
he nonlinear advection–diffusion equations are linearized by Newton procedure. The second-order accurate unconditionally
table generalized-α time integration is implemented to march the solution in time. The fluid and the structure equations

are weakly coupled by a second-order accurate staggered-partitioned scheme. Numerical examples include the cases of
fixed/vibrating/rotating cylinder(s) for heat & mass transfer and fluid–structure interaction in enclosure and external flow.
The obtained numerical results match well with the experiments, the empirical correlation and the numerical simulations in
literature. This methodology efficiently and accurately simulates the complex physics of heat & mass transfer.
c⃝ 2021 Elsevier B.V. All rights reserved.

Keywords: Nitsche’s method; GLS/PSPG stabilization; Ghost penalty method; Projection-based adaptive gauss quadrature; Heat & mass transfer;
Fluid–structure interaction

1. Introduction

Numerical simulations of the complex heat & mass transfer and the fluid–structure interaction are the challenging
asks, because of the numerous difficulties associated with the geometrical and the physical characteristics of
he multi-physics and the multi-scale phenomena. The subtle and fascinating coupling phenomenon between the
uid, the structure and the heat & mass transfer has attracted attention across diverse research communities.
specially, the heat & mass transfer and the fluid–structure interaction naturally occur in many bio-related research,
.g., hemodynamics & blood cells circulation, respiratory system, waste water treatment and colloidal systems,
nd various engineering applications, e.g., evaporators & heat exchanger, nuclear power plant, solar desalination
arm and hydrogen fuel cells. To address these physics-rich and challenging topics, where the large structural
isplacements, the complicated structural deformations and the subtle interaction of heat & mass transfer are
requently observed, we propose an accurate and robust numerical formulation based on the Nitsche’s methods
nd the unfitted stabilized finite element method.
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Nomenclature

Fluid variables

Re Reynolds number ( U∞L
ν

)

Gr Grashof number ( gβt (Th−Tl )L3

ν2 )
Pr Prandtl number ( ν

α
)

Ra Thermal Rayleigh number ( gβt (Th−Tl )L3

αν
= Gr Pr )

ν Kinematic viscosity
Ri Richardson number ( Gr

Re2 )
Le Lewis number ( αD )
Br Buoyancy ratio ( βc(ch−cl )

βt (Th−Tl ) )
βt Thermal expansion coefficient
βc Compositional expansion coefficient
U∞ Freestream velocity
ρ Fluid density
ρ0 Referential fluid density
g Gravitational acceleration vector
u Fluid velocity vector
u∗ Dimensionless fluid velocity vector
p Fluid pressure
p∗ Dimensionless pressure
h Surface traction vector
cp Constant pressure specific heat
α Thermal diffusivity
D Species diffusivity
T Temperature
θ Dimensionless temperature
q Surface heat flux
c Concentration of species
C Dimensionless concentration of species
j Surface species flux

Structure variables

L Characteristic length
m∗ Mass ratio ( ms

0.25πL2ρ0
)

ζ Damping ratio
a Angular velocity
Ur Reduced velocity ( U∞

fny L )
f n Structural frequency vector ([ fnx , fny]′)
Φ∗ Dimensionless location of structure
η∗ Dimensionless displacement of structure
DoF Degree-of-Freedom of vibration

Post-processing quantities

Nu Averaged Nusselt number (− 1
πL

∫ πL
0

∂θ
∂n ds)

Sh Averaged Sherwood number (− 1
πL

∫ πL
0

∂C
∂n ds) .
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Cd Drag coefficient
Cl Lift coefficient
Ax Streamwise vibration amplitude
Ay Transverse vibration amplitude
St Strouhal number
fvs Vortex-shedding frequency
ω Spanwise vorticity
τ Dimensionless time

Superscripts

∗ Dimensionless quantity
f Fluid quantity
s Structural quantity
f s Fluid–structure interface
cyl Cylinder
′ Transpose operator

Subscripts

vs Vortex shedding
h High
l Low
t Temperature
c Species

The unfitted formulation is an appealing approach to simulate the physical situations where the large structural
eformation and displacement are observed, e.g., fluid–structure interaction, membrane or free surface flows. In this
amily of methods, the fluid is modeled in the (spatial) Eulerian frame of reference while the immersed structure is
escribed in the Lagrangian frame of reference. The advantage is that the fluid grid does not have to align with the
uid–structure interface. Therefore, the additional efforts of generating body-fitted meshes and complex re-meshing
lgorithms for dealing with large-structural deformation are completely avoided. However, because of the fluid–
tructure interface is not aligned, it results in an embedded discontinuity within the finite elements and imposes
hallenges to the numerical formulations. To this end, the specialized techniques are employed to weakly enforce
he boundary conditions along an embedded interface and optimize the numerical integration over the discontinuous
unctions. For example, the immersed boundary (IB) method [1,2] and its variations, e.g., [3–7], are the ones among
he well-accepted approaches in unfitted formulation. Alternative well-established numerical methods under finite
lement framework are the distributed Lagrange multiplier/fictitious domain (DLM/FD) methods [8–10] and the
xtended finite element methods [11–13].

The idea of distributing the Lagrange points along an embedded interface was well established in the IB and
LM/FD methods. However, the usage of the Lagrangian multipliers increases the overall size of system matrix.
urthermore, an appropriate choice of Lagrange multiplier basis space is critical to satisfy the Babǔska–Brezzi
BB) condition [14,15]. Subsequently, the Nitsche’s methods gained attention among the research communities
nd is actively developed, because of its advantages, e.g., variational consistency and no increment of system size
no explicit introduction of Lagrangian multipliers). Nitsche’s method was first proposed in Nitsche (1971) [16].
ecently, a number of variances of Nitsche’s methods were proposed to solve different problems. For instance,
urman (2010) [17] proposed a robust stabilization technique (Ghost penalty method) for the fictitious domain
ethods and subsequently applied it for the Nitsche’s methods. Burman (2012) [18] and Schillinger et al. (2016) [19]

ocumented the penalty-free non-symmetric Nitsche’s method. Bazilevs et al. (2012) [20] introduced an upwind
erm to enhance the stability of Nitsche’s methods in case of a fast moving interface. Massing et al. (2014) [21]

ormulated the Nitsche’s method for Stokes problem. Nguyen et al. (2017) [22] proposed a diffuse Nitsche’s method

3



B. Liu Computer Methods in Applied Mechanics and Engineering 386 (2021) 114101

t
n
I
t
p
d
b

v

for the applications with phase-field boundaries, e.g., free-surface waves and multi-phase flow. Zou et al. (2017) [23]
proposed a Nitsche’s method for Helmholtz problems. Liu & Tan (2020) [24] derived a numerical integration scheme
to deal with the discontinuous function within the finite elements, the projection-based adaptive Gauss quadrature
(PAGQ) scheme, and applied it for Nitsche’s methods. In addition, the various Nitsche’s methods have been widely
used in the simulations of fluid–structure interaction (FSI) problems, e.g., [25–28]. In this article, a Nitsche’s method
formulation is proposed for the simulations of heat & mass transfer and fluid–structure interaction.

Compared with the fluid–structure interaction problems in the isothermal fluid flow, the rich physics induced by
he subtle interaction between fluid, structure, temperature and species field in wake is phenomenal. Recently, a
umber of novel numerical formulations of embedded interface are proposed for heat transfer in fluid flow [29,30].
n this article, we consider not only heat transfer, but mass transfer, fluid–structure interaction and their complicated
riple coupling. To this end, a robust Nitsche stabilized finite element formulation for multi-component and multi-
hysics simulations involving large structural displacement, heat convection, thermal buoyancy, suspension of
ifferent-density species is proposed in this article. The characteristics of the proposed formulation are listed
elow

• Nitsche’s method for heat & mass transfer and fluid–structure interaction
• Projected-based adaptive Gauss quadrature (PAGQ) [24] scheme for numerical integration of discontinuous

function over embedded interface with heat & mass transfer
• Ghost penalty method [17] stabilizing the jumps over the embedded interface in heat & mass transfer
• GLS/PSPG [31,32] stabilization and the outflow correction [33] for heat & mass transfer and fluid–structure

interaction
• An upwind term [20] to stabilize the Ntische’s method in case of fast moving interface
• Second-order accurate unconditionally stable generalized-α time integration for both fluid and structure

equations
• Second-order accurate staggered-partitioned weakly-coupling fluids–structure interaction schemes for heat &

mass transfer.

This article is organized as follows: In Section 2, the governing equations are presented, which consist of
the unsteady Navier–Stokes equation and the conservation of energy and species. The stabilized Nitsche finite
element formulation for heat & mass transfer and fluid–structure interaction is proposed in Section 3. The numerical
integration scheme, the time integration schemes and the fluid–structure coupling schemes are derived in Section 3
as well. Subsequently, the numerical examples are presented in Section 4 to validate the proposed numerical
formulation. Finally, the concluding remarks are shown in Section 5.

2. Governing equations

The governing equations consist of the unsteady incompressible Navier–Stokes equation, the conservation of
energy and the conservation of species. The conservation of energy and species are coupled with the conservation
of momentum (Navier–Stokes equation) via Boussinesq Approximation. The coupled governing equations are
subsequently non-dimensionalized by a set of dimensionless groups. This set of dimensionless groups is frequently
used for the problems of external flow, where the free-stream velocity is normally known. In double-diffusive mixed
convective flow, both the conservation of energy and species are coupled with the Navier–Stokes equation. For
either the heat or the mass transfer problem, the conservation of species or energy can be simply decoupled with
the Navier–Stokes equation.

2.1. Navier–Stokes Equation

The unsteady incompressible Navier–Stokes equation is presented in Eq. (1), where u, p and ρ respectively are
the fluid velocity vector, the pressure and the density. g = [0,−g]′ = [0,−9.81]′ is the gravitational acceleration
vector, where the superscript (·)′ is a transpose operator. The operator ∂t (·) refers to the temporal derivative of a
ariable. ũ and h̃ are the prescribed fluid velocity and the surface traction along the Dirichlet (Γ f

D ) and the Neumann
f f
(ΓN ) boundaries respectively, where they are complementary subsets of the entire fluid-domain boundaries Γ
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(Γ f
∪ Γ

f
N = Γ f and Γ

f
D ∩ Γ

f
N = Ø). The superscript f indicates the quantities of the fluid domain. ũ0 is the

rescribed initial fluid velocity, and n is an outward normal vector.

∇ · u = 0 ∀x ∈ Ω f (t) (1a)

ρ
(
∂t u + (u · ∇)u

)
= −∇ p + µ∇

2u + ρg ∀x ∈ Ω f (t) (1b)

u = ũ ∀x ∈ Γ
f

D (t) (1c)

σ {u, p} · n = h̃ ∀x ∈ Γ
f

N (t) (1d)

u = ũ0 ∀x ∈ Ω f (0) (1e)

he Cauchy stress tensor (σ ) for incompressible Newtonian fluid is defined as

σ {u, p} = −p I + 2µϵ(u) (2a)

ϵ(u) =
1
2

[
∇u + (∇u)′

]
(2b)

here I , µ and ϵ(u) respectively are the identity matrix, the dynamic viscosity and the strain rate tensor.

.2. Heat and mass transfer

The dynamics and the stability of heat & mass transfer are governed by the conservation of energy and species
n Eqs. (3a) and (3b), where T and c respectively refer to the temperature of fluid and the concentration of species.
he value of α in Eq. (3a) is the thermal diffusivity; and D in Eq. (3b) is the species diffusivity.

∂t T + (u · ∇)T = α∇
2T ∀x ∈ Ω f (t) (3a)

∂t c + (u · ∇)c = D∇
2c ∀x ∈ Ω f (t) (3b)

T = T̃ ; c = c̃ ∀x ∈ Γ
f

D (t) (3c)

α(∇T ) · n = q̃; D(∇c) · n = j̃ ∀x ∈ Γ
f

N (t) (3d)

T = T̃0; c = c̃0 ∀x ∈ Ω f (0) (3e)

T̃ , c̃, q̃ and j̃ respectively are the prescribed temperature, the prescribed concentration of species, the prescribed
eat flux and the prescribed species flux along the boundaries of fluid domain. T̃0 and c̃0 are the initial conditions
f the temperature and the species concentration.

For double diffusive heat & mass transfer in fluid, Eqs. (1a), (1b), (3a) and (3b) are solved together. If the fluid
nertia is dominant, e.g., the forced convection, the influence of the temperature and the species concentration on the
uid inertia can be neglected. In such cases, the coupling between the Navier–Stokes equation and the conservation
f energy and species are unilateral. In other words, the heat and species convection are driven by the fluid velocity,
he convection terms (u·(·)) on the left-hand side of Eqs. (3a) and (3b); whereas the Navier–Stokes equation remains
nchanged. On the other hand, if the dynamics of heat & mass transfer are comparable to the fluid inertia, e.g., the
ixed or natural convection, the coupling becomes bilateral instead, due to the changes in fluid density induced by

he gradients of temperature (buoyancy action) and species concentration. Because of the small density variations
resent in these type of flows, a general incompressible flow approximation is normally adopted. Assuming the
ensity is a function of temperature, ρ = ρ(T, c), the elementary thermodynamics states that βt = −

1
ρ0

(∂ρ/∂T )c

nd βc = −
1
ρ0

(∂ρ/∂c)t . Hence the density of fluid depends on both temperature and species concentration, which
an be written as

ρ = ρ0
[
1.0 − βt (T − Tl) − βc(c − cl)

]
(4)

where ρ0 is the referential fluid density. These considerations lead to the Boussinesq Approximation and result in
a force term (ρg) added in the y-component of Navier–Stokes equation. Since there is a referential fluid velocity
(U∞) in this study, the following dimensionless groups in Eq. (5) are used to non-dimensionalize the full set of
coupled equations. The resultant dimensionless form is presented in Eq. (6), where the Navier–Stokes equation is
converted to its conservative form by substituting the conservation of mass. n = [0,−1.0]′ is the unit vector of
g

5
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gravitational force. Re, Pr , Le and Br refer to the Reynolds number, the Prandtl number, the Lewis number and
the buoyancy ratio respectively. They are defined in Eq. (7), where Gr is the Grashof number.

x∗
=

x
L

; u∗
=

u
U∞

; τ =
tU∞

D
(5a)

p∗
=

p + ρ0gz
ρ0U 2

∞

; θ =
T − Tl

Th − Tl
; C =

c − cl

ch − cl
(5b)

∇ · u∗
= 0 ∀x∗

∈ Ω f (τ ) (6a)

∂τu∗
+ (u∗

· ∇)u∗
= −∇ p∗

+
1

Re
∇ ·

(
∇u∗

+ (∇u∗)′
)
− (Ri ng)(θ + Br C) ∀x∗

∈ Ω f (τ ) (6b)

∂τ θ + (u∗
· ∇)θ =

1
Re Pr

∇
2θ ∀x∗

∈ Ω f (τ ) (6c)

∂τC + (u∗
· ∇)C =

1
Le Re Pr

∇
2C ∀x∗

∈ Ω f (τ ) (6d)

u∗
= ũ∗

; θ = θ̃; C = C̃ ∀x∗
∈ Γ

f
D (τ ) (6e)(

−p∗ I +
2

Re
ϵ(u∗)

)
· n = h̃

∗

;
( 1

Re Pr
∇θ

)
· n = q̃∗

; (
1

Le Re Pr
∇C) · n = j̃∗

∀x∗
∈ Γ

f
N (τ ) (6f)

u∗
= ũ∗

0; θ = θ̃0; C = C̃0 ∀x∗
∈ Ω f (0) (6g)

Re =
U∞L
ν

; Ri =
gβt (Th − Tl)L

U 2
∞

=
Gr
Re2 ; Br =

βc(ch − cl)
βt (Th − Tl)

(7a)

Pr =
ν

α
; Gr =

gβt (Th − Tl)L3

ν2 ; Le =
α

D
(7b)

In Eqs. (5) and (6), the superscript (∗) means the quantity is dimensionless. The subscripts (h and l) represent
he highest and lowest temperature and species concentration in the computational domain. τ and θ respectively are
he dimensionless time and the dimensionless temperature. The value of z is the elevation height in the direction of
ravitational acceleration. L refers to the characteristic length, e.g., the diameter of a cylinder or the length of an
nclosure. The averaged Nusselt number (Nu) and Sherwood number (Sh) around the surface of cylinder (diameter

L) can be computed as.

Nu = −
1
πL

∫ πL

0

∂θ

∂n
ds; Sh = −

1
πL

∫ πL

0

∂C
∂n

ds (8)

3. Stabilized finite element formulation

First of all, the governing equations in their primitive variables in Eq. (6) are spatially discretized into a
semi-discrete form using the stabilized finite element formulation. Similar to the Navier–Stokes equation, the
conservation of energy and species in Eqs. (6c) and (6d) include the advection terms, (u∗

· ∇)θ and (u∗
· ∇)C ,

too. The advection term causes the oscillatory velocity field in Galerkin projection method. Hence the residual-
based stabilized finite element formulations, the Galerkin Least Squares (GLS) [31] and the Pressure Stabilizing
Petrov–Galerkin (PSPG) [32], are employed to stabilize the spurious oscillation of the velocity field with numerical
diffusion and circumvent the Ladyzhenskaya–Babuska–Brezzi (LBB) condition of the velocity–pressure field. To
derive a finite element formulation, we define appropriate sets of finite trial solution spaces (Sh

u , Sh
t , Sh

c and Sh
p) for

the velocity, the temperature, the species and the pressure, and their finite test function spaces (V h
u , V h

t , V h
c and

V h
p ) respectively in Eq. (9).

Sh
u = {u∗h

|u∗h
∈ (H 1h)d , u∗h .

= ũ∗h
∀x∗

∈ Γ
f

D (τ )} (9a)

V h
u = {ψh

u |ψ
h
u ∈ (H 1h)d ,ψh

u
.
= 0 ∀x∗

∈ Γ
f

D (τ )} (9b)

Sh
t = {θh

|θh
∈ H 1h, θh .

= θ̃h
∀x∗

∈ Γ
f

D (τ )} (9c)

V h
t = {ψh

t |ψh
t ∈ H 1h, ψh

t
.
= 0 ∀x∗

∈ Γ
f

D (τ )} (9d)
h h h 1h h .

˜ h ∗ f
Sc = {C |C ∈ H ,C = C ∀x ∈ ΓD (τ )} (9e)

6
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V h
c = {ψh

c |ψh
c ∈ H 1h, ψh

c
.
= 0 ∀x∗

∈ Γ
f

D (τ )} (9f)

Sh
p = V h

p = {ψh
p |ψ

h
p ∈ H 1h

} (9g)

where the superscript (h) indicates a finite function space, e.g., Sh
u ⊂ Su . The value of d refers to the number of

space dimension. H 1h is a finite dimensional space defined in Eq. (10), where P1 is the piecewise linear polynomial
and E denotes the set of elements resulting from the spatial discretization.

H 1h
= {Θh

|Θh
∈ C0,Θh

|Ωe ∈ P1,∀Ω e
∈ E } (10)

Hence the stabilized finite element formulation of Eq. (6) can be written as: for all ψh
u ∈ V h

u , ψ
h
p ∈ V h

p , ψ
h
t ∈ V h

t
nd ψh

c ∈ V h
c , find u∗h

∈ Sh
u , p∗h

∈ Sh
p, θ

h
∈ Sh

t and Ch
∈ Sh

c such that Eq. (11) is satisfied.

AP + AN + AG = 0 (11)

here AP , AN and AG respectively refer to the terms associated with the Petrov–Galerkin method, the Nitsche’s
ethod and the Ghost penalty method in the proposed formulation. The detailed formulation of these terms will be

iscussed subsequently.
The stabilized finite element formulation for the Navier–Stokes equation and the conservation of energy and

pecies (AP ) is presented in Eq. (12),

AP =

∫
Ω f

[
ψh

u ·

(
∂τu∗h

+
(
u∗h

n · ∇
)
u∗h

+
(
u∗h

· ∇
)
u∗h

n −
(
u∗h

n · ∇
)
u∗h

n + (Ri ng)(θh
+ Br Ch)

)]
dΩ  

BG ([ψh
u ,ψ

h
p ],[u∗h ,p∗h ,θh ,Ch ])

+

∫
Ω f

[
ϵ(ψh

u) : σ {u∗h, p∗h
}

]
dΩ −

∫
Γ

f
N

ψh
u · h̃

∗h
dΓ +

∫
Ω f

[
ψh

p∇ · u∗h]dΩ  
BG ([ψh

u ,ψ
h
p ],[u∗h ,p∗h ,θh ,Ch ])

−

∫
Γ

f
N (out)

ψh
u ·

[
−

1
Re

(∇u∗h)′ · n
]
dΓ  

Bcorr (ψh
u ,u∗h )

+

nel∑
e=1

∫
Ω f
τu

[(
u∗h

n · ∇
)
ψh

u −
1

Re
∇

2ψh
u + ∇ψh

p

]
·  

BS ([ψh
u ,ψ

h
p ],[u∗h ,p∗h ,θh ,Ch ])[

∂τu∗h
+

(
u∗h

n · ∇
)
u∗h

−
1

Re
∇

2u∗h
+ ∇ p∗h

+ (Ri ng)(θh
+ Br Ch)

]
dΩ  

BS ([ψh
u ,ψ

h
p ],[u∗h ,p∗h ,θh ,Ch ])

+

nel∑
e=1

∫
Ω f
τp

[
(∇ · ψh

u)(∇ · u∗h)
]
dΩ  

BS ([ψh
u ,ψ

h
p ],[u∗h ,p∗h ,θh ,Ch ])

+

∫
Ω f

[
ψh

t ·
(
∂τ θ

h
+

(
u∗h

n · ∇
)
θh

+
(
u∗h

· ∇
)
θh

n −
(
u∗h

n · ∇
)
θh

n

)
+

1
Re Pr

∇ψh
t · ∇θh

]
dΩ  

BG (ψh
t ,[u∗h ,θh ])

+

nel∑
e=1

∫
Ω f
τt

[(
u∗h

n · ∇
)
ψh

t −
1

Re Pr
∇

2ψh
t

]
·

[
∂τ θ

h
+

(
u∗h

n · ∇
)
θh

−
1

Re Pr
∇

2θh
]
dΩ  

BS (ψh
t ,[u∗h ,θh ])

−

∫
Γ

f
N

[
ψh

t q̃∗h]dΓ  
BG (ψh

t ,θ
h )

+

∫
Ω f

[
ψh

c ·
(
∂τCh

+
(
u∗h

n · ∇
)
Ch

+
(
u∗h

· ∇
)
Ch

n −
(
u∗h

n · ∇
)
Ch

n

)
+

1
Le Re Pr

∇ψh
c · ∇Ch

]
dΩ  

h
BG (ψc ,[u∗h ,Ch ])

7
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+

nel∑
e=1

∫
Ω f
τc

[(
u∗h

n · ∇
)
ψh

c −
1

Le Re Pr
∇

2ψh
c

]
·  

BS (ψh
c ,[u∗h ,Ch ])[

∂τCh
+

(
u∗h

n · ∇
)
Ch

−
1

Le Re Pr
∇

2Ch
]
dΩ  

BS (ψh
c ,[u∗h ,Ch ])

−

∫
Γ

f
N

[
ψh

c f̃ ∗h]dΓ  
BG (ψh

c ,Ch )

(12)

here the terms of BG(·) are derived from the standard continuous Galerkin method for the unsteady incompressible
avier–Stokes equation and the conservation of energy and species. In Eq. (12), the nonlinear incompressible
avier–Stokes equation and the conservation of energy and species are linearized by Newton linearization to achieve

he quadratic convergence, and the solution at each time step is updated in iterations until convergence. The variable
u∗h

n , θh
n and Ch

n are the velocity, the temperature and the species concentration in the last iteration step. Upon
onvergence, the terms

(
u∗h

n · ∇
)
u∗h

+
(
u∗h

· ∇
)
u∗h

n −
(
u∗h

n · ∇
)
u∗h

n ,
(
u∗h

n · ∇
)
θh

+
(
u∗h

· ∇
)
θh

n −
(
u∗h

n · ∇
)
θh

n and(
u∗h

n · ∇
)
Ch

+
(
u∗h

· ∇
)
Ch

n −
(
u∗h

n · ∇
)
Ch

n reduce to
(
u∗h

· ∇
)
u∗h ,

(
u∗h

· ∇
)
θh and

(
u∗h

· ∇
)
Ch respectively. The

boundary integral Bcorr (ψh
u, u∗h) is a correction term for the “do-nothing” outflow boundary condition to avoid

reverse numerical flux [33]. The terms of BS(·) in Eq. (12) are the stabilization terms based on GLS and PSPG
formulations. The stabilization parameters (τu , τp, τt and τc) are defined as

τu =

[( 2
dt

)2
+

(2∥u∗
∥

le

)2
+ 9

( 4
Re le

2

)2]−1/2
(13a)

τp =
le

2
∥u∗

∥γ for γ =

{
Reu/3 0 ⩽ Reu ⩽ 3
1 3 < Reu

(13b)

τt =

[( 2
dt

)2
+

(2∥u∗
∥

le

)2
+ 9

( 4
Re Pr le

2

)2]−1/2
(13c)

τc =

[( 2
dt

)2
+

(2∥u∗
∥

le

)2
+ 9

( 4
Le Re Pr le

2

)2]−1/2
(13d)

here Reu and le respectively are defined as cell Reynolds number and the characteristic element length. It is
oteworthy that the GLS and PSPG stabilizations are used for finite elements within flow domain, except the cut
ells (the element cut by the embedded interface). For cut cells, the Ghost penalty method replaces the GLS and
SPG stabilizations instead. The details will be furnished in Section 3.2.

.1. Nitsche’s method for heat and mass transfer

The symmetric and non-symmetric Nitsche’s methods (AN ) are shown in Eq. (14),

AN = γu1

∫
Γ f s

ψh
u(u∗h

− ũ∗h)dΓ −

∫
Γ f s

ψh
u(σ {u∗h, p∗h

} · n)dΓ  
BN ([ψh

u ,ψ
h
p ],[u∗h ,p∗h ])

−γu2

∫
Γ f s

(σ {ψh
u, ψ

h
p} · n)(u∗h

− ũ∗h)dΓ  
BN ([ψh

u ,ψ
h
p ],[u∗h ,p∗h ])

−

∫
Γ f s−

ψh
u

(
(u∗h

− ũ∗h) · n
)
(u∗h

− ũ∗h)dΓ  
BN ([ψh

u ,ψ
h
p ],[u∗h ,p∗h ])

+γt1

∫
Γ f s

ψh
t (θh

− θ̃h)dΓ −

∫
Γ f s

ψh
t (

1
Re Pr

∇θh
· n)dΓ  

h h
BN (ψt ,θ )

8
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Fig. 1. Schematic diagram of an embedded interface with Ghost penalty terms.

−γt2

∫
Γ f s

(
1

Re Pr
∇ψh

t · n)(θh
− θ̃h)dΓ  

BN (ψh
t ,θ

h )

+γc1

∫
Γ f s

ψh
c (Ch

− C̃h)dΓ −

∫
Γ f s

ψh
c (

1
Le Re Pr

∇Ch
· n)dΓ  

BN (ψh
c ,Ch )

−γc2

∫
Γ f s

(
1

Le Re Pr
∇ψh

c · n)(Ch
− C̃h)dΓ  

BN (ψh
c ,Ch )

(14)

where BN ([ψh
u, ψ

h
p], [u∗h, p∗h]), BN (ψh

t , θ
h) and BN (ψh

c ,Ch) are the terms of the Nitsche’s method for the flow,
the temperature and the species concentration fields respectively. n is the outward normal vector along the embedded
nterface (pointing into the fictitious domain). γu , γt and γc respectively are the penalty terms for the velocity, the

temperature and the species concentration. The γu2 = γt2 = γc2 = 1 corresponds to the symmetric Nitsche’s
ethod; whereas γu2 = γt2 = γc2 = −1 is used in the non-symmetric Nitsche’s method. γu1 ∈

1
Re le

[102, 103],
γt1 ∈

1
Re Pr le

[102, 103] and γc1 ∈
1

Le Re Pr le
[102, 103] are chosen to stabilized Nitsche’s methods. Both symmetric

and non-symmetric Nitsche’s methods can be employed in the proposed numerical formulation. The non-symmetric
variance differentiates from the symmetric variance in term of the characteristics of convergence. For the symmetric
variance, the penalty parameters (γu1, γt1 and γc1) are required to be large enough to ensure the convergence of
solution. In contrast, the restriction for these penalty parameters is less stringent in the non-symmetric Nitsche’s
method. The non-symmetric Nitsche’s method is also stable without these penalty parameters [18]. However, the
convergence of penalty-free non-symmetric Nitsche’s method is not guaranteed while the 1-order polynomial is
used [34]. In addition, the non-symmetric Nitsche’s method is also known for its sub-optimal convergence and
lack of adjoint consistency [19]. To improve the robustness of the proposed numerical formulation, the penalty
parameters (γu1, γt1 and γc1) are chosen large enough for both symmetric and non-symmetric Nitsche’s methods in

rder to guarantee the convergence of the solution. Upon the convergence of solution (u∗h
≈ ũ∗h , θ∗h

≈ θ̃∗h and
∗h

≈ C̃∗h), all penalty terms in both symmetric and non-symmetric Nitsche’s methods in Eq. (14) vanish. The
ine integral along Γ f s− is an upwind term [20] to enhance the robustness of numerical formulation for fast-moving
mmersed interfaces through background meshes. The Γ f s− boundary is defined as the “inflow” part of Γ f s as

Γ f s−
= {x | (u∗h

− ũ∗h) · n < 0.0, ∀xΓ f s
} (15)

3.2. Cut cell stabilization and fictitious domain

A cut cell is an element that is demarcated by an embedded interface, e.g., the blue circle in Fig. 1, into the
active fluid domain and the fictitious domain respectively. In this study, the embedded interface is represented by
a level-set function. If the solution to the level-set function is larger than zero, it indicates the fluid domain (Ω f )
and vice versa for the fictitious domain (Ω/Ω f ). If the physical part is very small, some basis functions have little
9
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support inside the physical domain. It leads to the large condition numbers of system matrix. To alleviate the jumps
of solutions across an embedded interface, the Ghost penalty method [17] is implemented along the edges of cut
cells, the red edges in Fig. 1. The specific terms of the Ghost penalty are listed in Eq. (16).

AG = βgp
u

1
Re

G(ψh
u, u∗h) + βgp

p Re g(ψh
p , p∗h)

+β
gp
t

1
Re Pr

G(ψh
t , θ

h) + βgp
c

1
Le Re Pr

G(ψh
c ,Ch) (16)

g(ψh
p , p∗h) =

e∑
k=1

l3
k

∫
Γ g

[[
∂αψh

p

∂nα
]][[

∂α p∗h

∂nα
]]dlk

G(ψh
u, u∗h) =

e∑
k=1

d∑
i=1

lk

∫
Γ g

[[
∂αψh

u(i)

∂nα
]][[

∂αu∗h
(i)

∂nα
]]dlk

G(ψh
t , θ

h) =

e∑
k=1

lk

∫
Γ g

[[
∂αψh

t

∂nα
]][[

∂αθh

∂nα
]]dlk

G(ψh
c ,Ch) =

e∑
k=1

lk

∫
Γ g

[[
∂αψh

c

∂nα
]][[

∂αCh

∂nα
]]dlk

here Γ g refers to the edges of cut cell where the Ghost penalty term is imposed. The first two terms in Eq. (16)
re used to alleviate the jumps of velocity gradients and pressure values over the embedded interface. The third
nd fourth terms are utilized to stabilize the jumps of temperature and species. e and d respectively refer to the
umber of edges of cut cell imposed with Ghost penalty terms and the dimension of problem. α and l are the order
f derivative and the length of element’s edge respectively. The operator [[·]] denotes a jump of solution across the
lement edge, which is defined as

[[Λ]] = Λ−n−
+ Λ+n+

; [[Λ]] = Λ−
· n−

+ Λ+
· n+ (17a)

[[
∂Λ

∂n
]] =

(∂Λ
∂x

)−

· n−
+

(∂Λ
∂x

)+

· n+ (17b)

here Λ and Λ are arbitrary scalar and vector quantities respectively. n is the outward normal vector of an element’s
dge. The superscripts (+ and -) refer to the left and right-hand sides of the element’s edge.

A detailed study of the performance of the Ghost penalty method for the incompressible Navier–Stokes equation
as reported by Dettmer et al. (2016) [26]. In this study, the performance of the Ghost penalty algorithm for heat
mass transfer is assessed in a canonical benchmark case, the double-diffusive mixed convection in an enclosure

ith an embedded cylinder, as shown in Fig. 2(a). The values of the dimensionless groups are chosen as Re = 20,
Pr = 0.7, Ri = 0.1, Br = 1.0 and Le = 5.0. The size of computational domain is 2L × 2L , where L = 1.0 is the
diameter of the embedded cylinder (the blue dotted line) in the center. The sizes of inlet and outlet are both 0.2L .
The assessments are conducted in two mesh resolutions, 20 × 20 and 40 × 40. Γe, Γw, Γn and Γs respectively
are the East, West, North and South boundaries. The inlet Γinlet is located in the left-down corner of the domain

ith an inflow velocity u∗
= [U∞, 0]′. On the other hand, the outlet Γoutlet is situated in the top-right corner of

he domain. The following boundary conditions are imposed along the boundaries of the computational domain in
ig. 2(a).

• u∗
= U∞ = 1.0; v∗

= θ = C = 0.0; ∀x ∈ Γinlet

• p∗
= 0.0 ∀x ∈ Γoutlet

• u∗
= 0.0;

∂θ
∂n =

∂C
∂n = 0.0 ∀x ∈ Γw ∪ Γe ∪ Γn ∪ Γs

• u∗
= 0.0; T = C = 1.0 ∀x ∈ Γcyl

The penalty parameters of Nitsche’s method are chosen as γu1 = 500/(Re le), γt1 = 500/(Re Pr le) and
γc1 = 500/(Le Re Pr le) respectively. To evaluate the performance of the Ghost penalty method for heat & mass
transfer, the corresponding penalty parameters are chosen as βgp

= β
gp
u = β

gp
p = β

gp
t = β

gp
c ∈ 1 × [10−11, 1010].

he condition number and L2 norm of the system matrix are employed as the metrics to evaluate its performance
gp −4
n Fig. 2(b). It shows that the condition numbers are minimized within the range of β ∈ [10 , 10]. The condition

10
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Fig. 2. Performance of Ghost penalty stabilization: (a) schematic diagram of double-diffusive mixed convection in an enclosure with an
embedded cylinder; (b) change of the condition number and L2 norm of system matrix with respect to the penalty parameters. mesh = 20
and mesh = 40 refer to the mesh resolution 20 × 20 and 40 × 40 respectively.

number and L2 norm of the original system matrix without the Ghost penalty terms (βgp ≲ 1×10−11) respectively
are within the order of magnitudes 1015 and 105. On the other hands as βgp ≳ 10, the Ghost penalty terms cause
a significant spike of L2 norm. Therefore, the penalty parameters are chosen as βgp

= 0.01 [26] for the numerical
xamples in this study.

To further improve the overall stability of the system matrix, an iterative solver, e.g., Generalized Minimal
esidual Method (GMRES), together with Additive Schwarz Method (ASM) preconditioning can be employed for
nite cell formulations [35]. In the fictitious domain, including the triangulated parts of cut cells inside fictitious
omain, the numerical integration of the finite element formulation (AP ) in Eq. (12) is not computed such that the
olutions inside the fictitious domain have no influence to the solutions inside the active (physical) flow field. A
ub-matrix is extracted from the system matrix, so the elements inside the fictitious domain are eliminated from
omputation.

.3. Projection-based adaptive Gauss quadrature (PAGQ)

In the proposed formulation, the projection-based adaptive Gauss quadrature(PAGQ) scheme [24] is employed
or the numerical integration inside the cut cells with embedded discontinuities. In PAGQ, the cut cell is sub-divided
nto smaller integration cells along the embedded interface, the blue lines in Fig. 3. The yellow dots are the Gauss
ntegration points. The red lines are the elemental edges imposed with the Ghost penalty terms. A number of
onstruction lines, the green lines in Fig. 3, are introduced to facilitate the triangulation such that the embedded
nterface aligns with the edges of integration cells. In each integration cell, the standard Gauss quadrature rule is
sed for the numerical integration without worrying discontinuity, since the embedded interface is aligned with its
dges. In this way, the embedded interface is treated as a boundary integral in standard continuous finite element
ethod.
For each integration cell, it results in a set of elemental matrices of its own, e.g., Ms , K s and Fs . For example,

he elemental characteristic matrix (K s) of the integration cell is projected by a transformation tensor (T ) into
he solution space of its parent cut cell, which leads to a reconstructed matrix K r

s . Subsequently, the projected
lemental matrices of integration cells are summed up to form the reconstructed elemental matrices of their parent
ut cell, e.g., Mr

c, K r
c and Fr

c in Eq. (18). These reconstructed elemental matrices assembled by an adaptive Gauss
uadrature rules are equivalent to the elemental matrices obtained by the standard Gauss quadrature rules over the

arent cut cell [24]. The assembly procedures and the construction of transformation tensor are presented in Eq. (18),

11
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w

Fig. 3. Schematic diagram of PAGQ numerical integration scheme for bilinear quadrilateral elements.

here Nc is the shape functions of the parent cut cell. {n} and {s} respectively are the sets of nodes of the parent
cut cell (physical nodes) and its sub-divided integration cells (dummy nodes). For the detailed discussion of the
PAGQ scheme and the analyzes of numerical formulation based on the Nitsche’s methods, please refer to Liu &
Tan (2020) [24].

Mc ≡ Mr
c =

n∑
i

T ′ MsT (18a)

K c ≡ K r
c =

n∑
i

T ′ K sT (18b)

Fc ≡ Fr
c =

n∑
i

T ′ Fs (18c)

T =

⎡⎢⎢⎢⎣
Nc(n1)(s1) Nc(n2)(s1) . . . Nc(n j )(s1)
Nc(n1)(s2) Nc(n2)(s2) . . . Nc(n j )(s2)

...
...

. . .
...

Nc(n1)(si ) Nc(n2)(si ) . . . Nc(n j )(si )

⎤⎥⎥⎥⎦ (18d)

3.4. Interface conditions

The fluid solver is coupled with the structural solver by satisfying the kinematic and the dynamic constraints
along the fluid–structure interface (Γ f s), as shown in Eq. (19).

u∗(Φ∗(X , τ ), τ ) = ∂τΦ
∗(X , τ ) ∀X ∈ Γ f s(τ ) (19a)

h∗(Φ∗(X , τ ), τ ) = −h∗cyl(Φ∗(X , τ ), τ ) ∀X ∈ Γ f s(τ ) (19b)

where h∗ and h∗cyl
= [h∗cyl

x , h∗cyl
y ] respectively are the dimensionless fluid and structural stresses along the fluid–

structure interface. The value of Φ∗ is the dimensionless location of the structure, which is defined in Eq. (20),
where η∗ is the dimensionless displacement of structure at time τ . The values of ∂τΦ∗ and ∂2

τΦ
∗ are defined as

the structural velocity and acceleration respectively.

Φ∗(X , τ ) = η∗(X , τ ) + X ∀X ∈ Ω s(τ ) (20)
12
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The superscript (s) indicates the structural variables. Hence the governing equation of the structure can be formulated
as follows

∂2
τΦ

∗
+ cs∂τΦ

∗
+ ksη∗

= h∗cyl
∀X ∈ Ω s(τ ) (21)

cs
= 2ζ

√

ksms; ks
= (2π f n)2ms

Ur = U∞/( fny D); ms
= m∗(0.25πL2ρ0)

here cs
= [cs

x , cs
y]′, ks

= [ks
x , ks

y]′ and f n = [ fnx , fny]′ respectively are the resultant damping coefficient vector,
he resultant stiffness coefficient vector and the structural frequency vector. m∗ is the mass ratio and ζ is the damping

ratio. The reduced velocity (Ur ) is defined based on the structural frequency in the transverse direction ( fny). In
this investigation, it is assumed that the structural frequencies in transverse and streamwise directions are identical.
The values of L = 1.0 and ms are the diameter and mass of the cylinder.

3.5. Time integration and fluid–structure coupling scheme

The second-order accurate and unconditionally stable generalized-α scheme is employed for both the heat &
mass transfer and the structure equations in the proposed numerical formulation. The generalized-α scheme belongs
to the α-family time integration schemes, in which the numerical solution is solved at fractional time steps and
subsequently projected forward in time.

For the heat & mass transfer equations, the system of equation can be represented as the form in Eq. (22) and their
olutions at the fractional steps [36] are defined in Eq. (23) below,where ρ∞ is the spectral radius controlling the

damping in frequency domain. The definitions in Eq. (23e) guarantee that the time integration is unconditionally
stable and second order accurate [36]. Assuming that the resultant linear system of the stabilized finite element
formulation for heat & mass transfer at two consecutive time steps can be written into the matrix form in Eq. (24).

M · ∂τu∗h
+ K · u∗h

= F (22)

∂τu∗h
τ+α

f
m

= (1 − α f
m) ∂τu∗h

τ + α f
m ∂τu∗h

τ+1 (23a)

u
τ+α

f
f

= (1 − α
f
f ) u∗h

τ + α
f
f u∗h

τ+1 (23b)

Fn+α
f
f

= (1 − α
f
f ) Fτ + α

f
f Fτ+1 (23c)

u∗h
τ+1 − u∗h

τ

dτ
= (1 − γ f )∂τu∗h

τ + γ f ∂τu∗h
τ+1 (23d)

α f
m =

1
2

3 − ρ∞

1 + ρ∞

; α
f
f =

1
1 + ρ∞

; γ f
=

1
2

+ α f
m − α

f
f (23e)

M · ∂τu∗h
τ + K τ · u∗h

τ = Fτ (24a)

M · ∂τu∗h
τ+1 + K τ+1 · u∗h

τ+1 = Fτ+1 (24b)

where it is assumed that the mass matrix (M) is independent of time; whereas the characteristic matrix (K ) and
the force vector (F) will change at the different time steps. Substituting Eq. (24) into Eq. (23d), the solution at the
next time step (uτ+1) can be computed by the expression in Eq. (25), where dτ is the time step size.

K̂ τ+1 · u∗h
τ+1 = K̂ τ · u∗h

τ + F̂τ,τ+1 (25)

K̂ τ+1 = M + γ f dτ K τ+1; K̂ τ = M − (1 − γ f ) dτ K τ

F̂τ,τ+1 = dτ [γ f Fτ+1 + (1 − γ f ) Fτ ]

The similar derivation procedures of the generalized-α time integration scheme can be applied to the structure
quation too. Based on Eq. (21), the system of equation representing the structural dynamics can be written in
he form in Eq. (26), where the mass (M), the damping (C) and the stiffness (K ) matrices are assumed to be
ndependent on time.

2 ∗ ∗ ∗
M · ∂τ η + C · ∂τη + K · η = F (26)

13
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The solutions to the structure equation at the fractional steps [37] can be defined as

∂2
τ η

∗

τ+1−αs
m

= (1 − αs
m) ∂2

τ η
∗

τ+1 + αs
m ∂

2
τ η

∗

τ (27a)

∂τη
∗

τ+1−αs
f

= (1 − αs
f ) ∂τη∗

τ+1 + αs
f ∂τη

∗

τ (27b)

η∗

τ+1−αs
f

= (1 − αs
f ) η∗

τ+1 + αs
f η

∗

τ (27c)

Fn+1−αs
f

= (1 − αs
f ) Fτ+1 + αs

f Fτ (27d)

∂τη
∗

τ+1 − ∂τη
∗
τ

dτ
= (1 − γ s)∂2

τ η
∗

τ + γ s∂2
τ η

∗

τ+1 (27e)

η∗

τ+1 − η∗
τ

dτ
= ∂τη

∗

τ + dτ
(
(
1
2

− βs)∂2
τ η

∗

τ + βs∂2
τ η

∗

τ+1

)
(27f)

αs
m =

2ρ∞ − 1
ρ∞ + 1

; αs
f =

ρ∞

ρ∞ + 1
; γ s

=
1
2

− αs
m + αs

f ; β
s
=

1
4

(1 − αs
m + αs

f )2 (27g)

here the αs
m , αs

f , γ s and βs are defined to ensure the time integration scheme is unconditionally stable and
econd order accurate [37]. Similar to the implementation of generalized-α scheme for heat & mass transfer, the
∞ represents the spectral radius to control the frequency damping.

Therefore, the structural equation at two consecutive time steps can be written as

M · ∂2
τ η

∗

τ + C · ∂τη
∗

τ + K · η∗

τ = Fτ (28a)

M · ∂2
τ η

∗

τ+1 + C · ∂τη
∗

τ+1 + K · η∗

τ+1 = Fτ+1 (28b)

Inserting Eq. (27e) into Eq. (27f), and subsequently substituting Eqs. (28) and (27f) into Eq. (27e), the structural
elocity (∂τη∗

τ+1) at the next time step can be computed in Eq. (29). Once ∂τη∗

τ+1 is obtained, the structural
cceleration and displacement can be computed in Eqs. (27e) and (27f) respectively.

M̂ · ∂τη
∗

τ+1 = R̂τ,τ+1 (29)

M̂ = M + γ sdτC + βsdτ 2 K
R̂τ,τ+1 = dτ

[
(1 − γ s)Fτ + γ s Fτ+1

]
+

[
M − (1 − γ s)dτC − (γ s

− βs)dτ 2 K
]
· ∂τη

∗

τ

− dτ K · η∗

τ − γ sdτ 3[1
2

− βs
−

(1 − γ s)βs

γ s

]
K · ∂2

τ η
∗

τ

Due to the complicated interaction between fluid, heat and species, it is expected that the multiple scales in
eat & mass transfer can lead to very small time step. This restriction of time step increases the computational
ost in practice, especially for the implicit time integration schemes and the multi-scale simulations. In this study,
he double diffusive mixed convection flow over a stationary circular cylinder is taken as an example to assess the
erformance of the implemented generalized-α scheme. In this configuration, the cylinder possesses the highest
emperature (θ = 1.0) and concentration of species (C = 1.0). The size of the computational domain is 60L ×50L ,
here L is the cylinder’s diameter. The upstream and side distances respectively are 20L and 25L . The values of

he dimensionless groups are Re = 100, Pr = 0.7, Br = 1.0 and Le = 5.0. Thanks to the robust generalized-α
ime integration scheme, the time convergence study in Table 1 shows that the results converge at dτ = 0.005 (the
rror is within 1%). In fact, except for the fluctuation of lift force (Crms

l ), who error is about 1.2% with respect to

he referential values, the errors of the other results at dτ = 0.01 are also within 1%.

14
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Table 1
Double-diffusive mixed convection over a circular cylinder at Re = 100, Pr = 0.7, Ri = 1.0, Br = 1.0, Le = 5.0 and different time steps.

TIME STEP Cd Cl Crms
l Nu Nurms Sh Shrms

dτ = 0.0400 1.194
(1.6%)

−1.782
(2.6%)

0.295
(10.9%)

5.221
(0.5%)

0.055
(0.0%)

9.692
(0.4%)

0.139
(3.5%)

dτ = 0.0200 1.204
(0.8%)

−1.807
(1.2%)

0.311
(6.0%)

5.235
(0.3%)

0.055
(0.0%)

9.716
(0.2%)

0.142
(1.4%)

dτ = 0.0100 1.211
(0.2%)

−1.818
(0.6%)

0.327
(1.2%)

5.242
(0.1%)

0.055
(0.0%)

9.728
(0.0%)

0.143
(0.7%)

dτ = 0.0050 1.213
(0.0%)

−1.825
(0.2%)

0.330
(0.3%)

5.248
(0.0%)

0.055
(0.0%)

9.732
(0.0%)

0.144
(0.0%)

dτ = 0.0025 1.214 −1.829 0.331 5.249 0.055 9.734 0.144

In the proposed numerical formulation, a second-order accurate staggered-partitioned scheme [38] is employed
o couple the fluid and the structure equations. The pseudocode of the implemented fluid–structure coupling scheme
n each time step is briefly summarized below

In each time step (t):

1. predict the traction force on the structure: h∗cyl
p (t + 1) = 2 h∗cyl(t) − h∗cyl(t − 1)

2. find the solution to the structure equation for the next time step, ∂τΦ∗(t + 1) and η∗(t + 1)
3. update the location and velocity of the structure in fluid and find the solution to fluid equation

for the next time step, u∗(t + 1) and ĥ
∗

(t + 1)
4. relax the traction force along interface Γ f s(t+1): h∗cyl(t+1) = −γ f s ĥ

∗

(t+1)+(1−γ f s)h∗cyl
p (t+

1)

where γ f s is the relaxation parameter. In this study, γ f s
= 0.8 is used for all numerical examples. The predicted

raction force at the next time step (h∗cyl
p (t +1)) is a first-order approximation. The relationship between the traction

orces experienced by the structure and the fluid is h∗cyl(t) = −h∗(t). For the detailed algorithm of this coupling
cheme and the second-order predicted traction force, please refer to Dettmer & Perić (2013) [38].

. Numerical examples

The accuracy and robustness of the proposed numerical formulation are assessed by studying a number of
umerical examples, e.g., forced convection, mixed convection, heat & mass transfer, rotation, vibration and cylinder
rrays. Except for the validation cases, in all numerical examples, (a) the stabilized Nitsche’s method is employed;
b) the Ghost penalty parameter is set as 0.01; (c) the relaxation parameter in fluid–structure coupling is 0.8 and
d) the mass ratio and the damping ratio are m∗

= 10 and ζ = 0.01 respectively, unless otherwise specified.
he numerical results are compared with the other numerical results, experiments and an empirical correlation in

iterature.

.1. Heat convection

For the simulations of heat convection, the conservation of species is completely decoupled with the Navier–
tokes equation and the conservation of energy. Except for the simulation of heat & mass transfer within an
nclosure in Section 4.2.1, the numerical examples of cylinders are simulated in three configurations: (a) a
xed/rotating cylinder; (b) a vibrating cylinder and (c) three fixed/vibrating cylinders in an equilateral-triangular
rrangement, as shown in Fig. 4, where Lu , Ld , H , L , a and g∗ respectively are the upstream distance, the
ownstream distance, the height of domain, the characteristic length (the cylinder’s diameter), the angular speed of
cylinder and the center-to-center distance of cylinders. For the simulation of a fixed heated cylinder, the value

f angular velocity is taken as zero (a = 0.0). In Fig. 4(c), the cylinder upstream is cylinder 1, the top cylinder

ownstream is cylinder 2 and the last one is cylinder 3.
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Fig. 4. Schematic diagrams of cylinder(s): (a) a fixed/rotating heated cylinder; (b) a vibrating heated cylinder and (c) vibrating heated
ylinders in equilateral-triangular arrangement.

Fig. 5. Forced convection over a heated cylinder at Re = [80, 150] and Pr = 0.7: (a) drag coefficient; (b) lift coefficient and (c) averaged
usselt number.

The boundary conditions (u∗
= U∞ = 1.0, v∗

= θ = C = 0.0) are imposed along the inlet, the left boundary of
he computational domain. The traction-free boundary condition is imposed along the other boundaries of domain,
16
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Fig. 6. Contours of vorticity and temperature for forced convection over a heated cylinder at Pr = 0.7 and τ = 250: (a) Re = 80; (b)
Re = 100 and (c) Re = 150. The plots are colored with vorticity contours (ω ∈ [−2.0, 2.0]) and the solid lines are temperature contours
θ ∈ [0, 1.0]).

able 2
ime-averaged Nusselt number (Nu) for forced convection over a heated cylinder.

Pr 1.0 10

Re 10 20 30 10 20 30

Churchill & Bernstein [39] 2.062 2.793 3.355 4.414 6.123 7.435
Juncu [40] 2.061 2.727 3.229 4.260 5.740 6.944
Sarkar et. al. [41] 2.078 2.753 3.238 4.303 5.775 7.012
Liu [42] 2.060 2.715 3.201 4.284 5.699 6.971
Present 2.061 2.721 3.217 4.329 5.762 6.991

e.g., the outlet and the sides. The Dirichlet boundary condition (θ = C = 1.0) is weakly satisfied by the Nitsche’s
ethod along the embedded cylinder(s).

.1.1. Forced and mixed convection over a heated cylinder
The forced convection over a fixed cylinder is a classical benchmark example used to study the performance of

numerical scheme. The geometry and boundary conditions, Lu = 20, Ld = 50, H = 50, L = 1.0, U∞ = 1.0 and
= 0.0 (fixed cylinder), for this problem are shown in Fig. 4(a). The total number of elements is 34 271 and there

re 60 elements across the diameter of cylinder. The time step taken is ∂τ = 0.01.
The cases of forced convection (Ri = 0.0) are studied at first. The computed time-averaged Nusselt number (Nu)

for a fixed cylinder in forced convection at different Re and Pr values are compared with literature in Table 2.
imilarly, the hydrodynamic forces obtained from the proposed numerical formulation are also validated with those
rom literature in Table 3 for unsteady flow over a fixed heated cylinder at Re = [100, 200] and Pr = 0.7.

These computed numerical results show good agreement with numerical simulations in literature. Furthermore, the
computed values of Nu match well with the empirical correlation for forced convection [39] in Tables 2 and 3 too.

The empirical correlation [39] to approximate the averaged Nusselt number in forced convection over a heated
cylinder is defined in Eq. (30) and used in Tables 2 and 3. It is calibrated with experimental data and recommended
17
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Table 3
Forced convection over a heated cylinder at Re = [100, 200] and Pr = 0.7.

Re Reference Cd Cl St Nu

100

Churchill & Bernstein [39] – – – 5.16
Liu et. al. [43] 1.350 ± 0.012 ±0.339 0.164 –
Mahir & Altaç [44] 1.368 ± 0.029 ±0.343 0.172 5.179 ± 0.003
Izadpanah et. al. [45] 1.373 ± 0.010 ±0.229 0.169 5.159 ± 0.002
Present 1.342 ± 0.012 ±0.328 0.167 5.156 ± 0.002

200

Churchill & Bernstein [39] – – – 7.19
Liu et. al. [43] 1.310 ± 0.049 ±0.690 0.192 –
Mahir & Altaç [44] 1.376 ± 0.048 ±0.698 0.192 7.474 ± 0.028
Izadpanah et. al. [45] 1.336 ± 0.046 ±0.700 0.200 7.452 ± 0.026
Present 1.369 ± 0.047 ±0.690 0.192 7.441 ± 0.028

Fig. 7. Mixed convection over a heated cylinder at Re = 100, Pr = [0.7, 100] and Ri = [0.0, 2.0]: (a) time-averaged Nusselt number; and
b) Strouhal number.

or the cases of Re Pr ≳ 0.2. It shows that the approximated heat convection based on the proposed numerical
cheme match well with the empirical correlation.

Nu = 0.3 +
0.62Re1/2 Pr1/3

[1 + (0.4/Pr )2/3]1/4

[
1 +

( Re
282000

)5/8]4/5
(30)

The time histories of Cd , Cl and Nu for the forced convection over a heated cylinder at Re = [80, 150] and
Pr = 0.7 are shown in Fig. 5. The obtained values of Nu match well with the results of numerical simulation and
empirical correlation in Table 3. The corresponding contours of the spanwise vorticity (ω) and the temperature (θ )
are plotted in Fig. 6. It can be seen that the temperature contours (the solid lines) follows closely with the dynamics
of the vortices downstream (the colored contours) in forced convection.

For forced convection, the conservation of energy is completely decoupled with the Navier–Stokes equation.
Whereas, the perturbation of the temperature field on fluid inertia is important in mixed convective flow. This
perturbation becomes very important to vortex dynamics in wake. As shown in Fig. 7, the time-averaged Nusselt
number and Strouhal number change proportionally with the Prandtl and Richardson numbers in mixed convection.
The obtained results of Nu and St in Fig. 7 show good agreement with literature [46]. The time histories of Cd ,

l and Nu for the mixed convection over a heated cylinder at Re = 100, Pr = [0.7, 10] and Ri = [1.0, 2.0]
are presented in Fig. 8. It is found that the buoyancy action in mixed convection has a significant influence on the
hydrodynamic forces. The corresponding contours of the vorticity and the temperature are exhibited in Fig. 9.

For the cases of vibrating cylinder(s), it is assumed that there is a spring–damper system attached on cylinder(s).

In this study, the natural frequencies of cylinder in streamwise and transverse directions are assumed to be identical,

18
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Fig. 8. Mixed convection over a heated cylinder at Re = 100, Pr = [0.7, 10] and Ri = [1.0, 2.0]: (a) drag coefficient; (b) lift coefficient
nd (c) averaged Nusselt number.

fnx = fny . The proposed formulation for structural vibration is validated with literature [47,48]. In validation, a
-Degree-of-Freedom (DOF) vibrating heated cylinder in forced convection is simulated. In this case, the Reynolds
umber, the Prandtl number, the mass ratio, the damping ratio respectively are set as Re = 150, Pr = 0.7,
∗

= 2.0 and ζ = 0.0. The time-averaged Nusselt number (Nu) and the transverse vibration (Ay) are chosen
for comparison in Fig. 10, which shows a good agreement between the obtained numerical results and literature.
The corresponding contours of vorticity and velocity magnitude of a 1-DoF heated cylinder vibrating in transverse
direction are shown in Fig. 11. These validation cases show that the proposed numerical formulation is robust
and accurate to approximate the complex situations in multi-physics simulations involving heat convection and
fluid–structure interaction.

4.1.2. Forced and mixed convection over an equilateral-triangular arrangement
The proximity and the wake interference in multi-body systems are strong. Hence, the heat convection, the

hydrodynamics and the boundary layer dynamics are much more complicated. It imposes a challenge to unfitted
finite element formulations to accurately approximate the complicated variation in boundary layers and vorticity
clusters in near wake. To this end, three heated cylinders in an equilateral-triangular arrangement at a typical gap
distance g∗

= 3.0 is chosen to assess the robustness of the proposed Nitsche’s method and the PAGQ numerical

integration scheme.
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Fig. 9. Contours of vorticity and temperature for mixed convection over a heated cylinder at Re = 100 and τ = 350: (a) Pr = 0.7 and
Ri = 1.0; (b) Pr = 0.7 and Ri = 2.0; (c) Pr = 10 and Ri = 1.0 and (d) Pr = 10 and Ri = 2.0. The plots are colored with vorticity
contours (ω ∈ [−2.0, 2.0]) and the solid lines are temperature contours (θ ∈ [0, 1.0]).

Fig. 10. Forced convection over a 1-DoF vibrating cylinder at Re = 150, Pr = 0.7, m∗
= 2.0 and ζ = 0.0: (a) time-averaged Nusselt

umber; and (b) transverse vibration.

In this study, the case of forced convection over an equilateral-triangular arrangement at Re = 100, Pr = 0.7
nd g∗

= 3.0 is chosen for the purpose of validation. The total number of element for the cases of equilateral-
riangular arrangement is 82 471. There are 60 elements along the diameter of each cylinder and the growth rate
f element is controlled within 1.05. As listed in Table 4, the results obtained with the present scheme agree
ell with literature [49–51], where the subscripts (1 and 2) refer to the cylinder upstream and the top cylinder
ownstream. ∆(·) indicate the fluctuation of a quantity, e.g., ∆Cd means the fluctuation of drag coefficient with
espect to its time-averaged value. The corresponding contours of the spanwise vorticity, the temperature and the
20
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Fig. 11. Contours for forced convection over a vibrating heated cylinder at Re = 150, Pr = 0.7, m∗
= 2.0, ζ = 0.0 and τ = 350:

a) vorticity field (ω ∈ [−2.0, 2.0]) and (b) velocity magnitude (|u∗
| ∈ [0.0, 1.2]).

Fig. 12. Contours for forced convection over an equilateral-triangular arrangement at Re = 100, Pr = 0.7, g∗
= 3.0 and τ = 400:

a) vorticity field (ω ∈ [−2.0, 2.0]); (b) temperature field (θ ∈ [0.0, 1.0]) and (c) velocity magnitude (|u∗
| ∈ [0.0, 1.2]).

able 4
orced convection over an equilateral-triangular arrangement at Re = 100, Pr = 0.7 and g∗

= 3.0.

Cd1 ∆Cd1 C l1 ∆Cl1 Cd2 ∆Cd2 C l2 ∆Cl2 St

Bao et. al. [49] 1.05 0.0010 0 0.0175 1.26 0.0167 −0.060 0.201 –
Zheng et. al. [50] 1.23 0.0288 0 −0.002 1.53 0.0214 −0.087 0.335 –
Chen et. al. [51] 1.03 0.0014 0 0.0173 1.23 0.0166 −0.059 0.181 0.137
Present 1.02 0.0011 0 0.0174 1.22 0.0210 −0.057 0.205 0.137

velocity magnitude are presented in Fig. 12. Due to the enhanced proximity and wake interference, a complicated
interaction of temperature field is observed in wake in Fig. 12(b).

In mixed convection, the influence of thermal buoyancy is important. Especially, the amplified perturbation from
he buoyancy-driven flow also imposes a numerical challenge on the embedded-interface formulations, because of
21
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Fig. 13. Mixed convection over an equilateral-triangular arrangement at Re = 100, Pr = 0.7, Ri = 1.0 and g∗
= 3.0: (a) drag coefficient;

b) lift coefficient and (c) averaged Nusselt number.

he strong temperature gradient. A case of mixed convection over an equilateral-triangular arrangement at Re = 100,
Pr = 0.7, Ri = 1.0 and g∗ is also chosen to assess the robustness of the proposed scheme. The time histories of

d , Cl and Nu from three heated cylinders are plotted in Fig. 13.
It is found that the nonlinearity in hydrodynamic responses is very strong due to the proximity and the wake

nterference. Especially, cylinder 3 experiences the strongest fluctuation in hydrodynamic forces and heat convection.
he corresponding contours of the spanwise vorticity, the temperature, the pressure and the velocity magnitude are
lotted in Fig. 14. Compared with Fig. 12 in forced convection, the wake in Fig. 14 is non-symmetric due to cross
hermal buoyancy. The overall temperature around the cylinder 3 is high in Fig. 14(b), which indicates a smaller
emperature gradient and inefficiency of heat convection. A large recirculating region of low pressure is also observed
round the cylinder 3 in Fig. 14(c). It explains the large fluctuation of the hydrodynamic forces around the cylinder
in Fig. 13.

.2. Heat and mass transfer

In heat & mass transfer, both the conservation of energy and species are fully coupled with the Navier–Stokes
quation. Two additional dimensionless groups are introduced for heat & mass transfer: they are the buoyancy ratio
Br ) and the Lewis number (Le). For example, if the density of the species is assumed to be higher than that of the
ixture, the fluid is weighed down as the species concentration increases. This results in βc and Br being negative
alues and vice versa. On the other hand, the Lewis number also indicates the strength of the species diffusivity
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Fig. 14. Contours for mixed convection over an equilateral-triangular arrangement at Re = 100, Pr = 0.7, Ri = 1.0, g∗
= 3.0 and τ = 200:

a) vorticity field (ω ∈ [−2.0, 2.0]); (b) temperature field (θ ∈ [0.0, 1.0]); (c) pressure field (p∗
∈ [−1.2, 0.4]) and (d) velocity magnitude

|u∗
| ∈ [0.0, 1.8]).

Fig. 15. Schematic diagrams of heat & mass transfer in enclosures: (a) binary gases in an enclosure; (b) heat & mass transfer in lid-driven
avity flow and (c) double-diffusive mixed convection around a heated cylinder in an enclosure.

ith respect to the thermal diffusivity. In this study, the proposed scheme is assessed for both the positive and the
egative values of Br and a range of Lewis numbers.

.2.1. Double-diffusive mixed convection in an enclosure
The proposed scheme for heat & mass transfer is validated with the simulations and the experiment in literature.

hree configurations are considered: (a) binary gases in an enclosure in Fig. 15(a); (b) heat & mass transfer in

id-driven cavity flow in Fig. 15(b) and (c) double-diffusive mixed convection around a heated cylinder in an
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Fig. 16. Comparison of streamlines for heat & mass transfer of binary gases in an enclosure: (a) experiment at Ri = 1.0, Gr = 5.88 × 105,
Br = 0.55 and Le = 0.588; (c,e) simulations at Ri = 1.0, Gr = 5.91 × 105, Br = 0.55 and Le = 0.588; (b) experiment at Ri = 1.0,
Gr = 9.31 × 105, Br = −1.85 and Le = 0.823 and (d, f) simulations at Ri = 1.0, Gr = 9.27 × 105, Br = −1.85 and Le = 0.823.

ig. 16(a,b,c,d) are obtained in literature [52].

nclosure in Fig. 15(c). L = 1.0 is the characteristic length. p∗

re f = 0.0 is a referential pressure imposed at a
ode in fluid boundary. The origin of the coordinate system is placed in the center of computational domains in
ig. 15. The embedded interface is highlighted with dotted blue lines, where the proposed Nitsche’s method is
mployed.
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Fig. 17. Double-diffusive mixed convection in a rectangular enclosure with an insulated moving lid at Pr = 0.7, Ri = 1.0, Br = 1.0,
Le = 10.0 and u∗

lid = −1.0: (a,b) iso-concentration lines of species; (c,d) streamlines and (e,f) iso-thermal lines. Fig. 17(a,c,e) are obtained
n literature [53].

For the configuration (a) in Fig. 15(a), the following boundary conditions are imposed along the boundaries.

• u∗
= 0.0; θ = C = 1.0 ∀x ∈ Γw

• u∗
= 0.0; θ = C = 0.0 ∀x ∈ Γe

• u∗
= 0.0; θ = 1.0 − (x + 0.5); C = 0.0 ∀x ∈ Γn ∪ Γs
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Fig. 18. Double-diffusive mixed convection over a heated cylinder in a square enclosure at Gr = 1.4 × 104, Ri = 1.0, Pr = 0.7, Br = 1.0
nd Le = 5.0: (a,b) iso-concentration lines of species; (c,d) streamlines and (e,f) iso-thermal lines. Fig. 18(a,c,e) are obtained in literature [54].

he total number of elements for the configuration (a) is 6400. The time step is dτ = 0.01. The results obtained
or the configuration (a) are presented in Fig. 16(e,f) and compared with the experiments and simulations in litera-
ure [52] in Fig. 16(a,b,c,d). The detailed setup of the parameters are stated in the caption of Fig. 16. It is found that
he results obtained from the proposed formulation match well with the experimental and numerical data in
iterature [52].

Next, the proposed scheme is assessed in configuration (b), the heat & mass transfer in lid-driven cavity flow,
s shown in Fig. 15(b). The following boundary conditions are imposed along the boundaries of the configuration (b).
26
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Fig. 19. Lift coefficient of a rotating heated disk in double-diffusive mixed convection at Re = 200, Pr = 0.7, Ri = [0.0, 1.0],
Br = [−1.0, 1.0], Le = 5.0 and a = 1.0.

Fig. 20. Contours for double-diffusive mixed convection over a rotating heated disk at Re = 200, Pr = 0.7, Ri = 1.0, Br = 1.0, Le = 5.0,
= 1.0 and τ = 50: (a) vorticity field (ω ∈ [−2.0, 2.0]); (b) temperature field (θ ∈ [0.0, 1.0]) and (c) species field (C ∈ [0.0, 1.0]).

• u∗
= 0.0; θ = C = 1.0 ∀x ∈ Γw

• u∗
= 0.0; θ = C = 0.0 ∀x ∈ Γe

• u∗
= −1.0; v∗

= 0.0;
∂θ
∂n =

∂C
∂n = 0.0 ∀x ∈ Γn

• u∗
= 0.0;

∂θ
∂n =

∂C
∂n = 0.0 ∀x ∈ Γs

where p∗

re f = 0.0 is a referential pressure imposed on one node along boundary Γw. The stabilized Nitsche’s
method is applied along boundary Γn . The total number of element and the time step taken are 12 800 and 0.01
respectively. The obtained results are compared with literature [53] in Fig. 17. The contours in Fig. 17(d) are
27
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Fig. 21. Double-diffusive mixed convection over a heated cylinder at Re = 100, Pr = 0.7, Ri = 1.0, Br = [−2.0, 2.0] and Le = [5.0, 10]:
a) drag coefficient; (b) lift coefficient; (c) averaged Nusselt number and (d) averaged Sherwood number.

olored with the vorticity. The detailed setup of the parameters is presented in the caption of Fig. 17. It shows that
he obtained streamlines and contours of the temperature and the species concentration match well with litera-
ure [53].

For the configuration (c) in Fig. 15(c), the following boundary conditions are imposed along the fluid boundaries.

• u∗
= U∞ = 1.0; v∗

= θ = C = 0.0; ∀x ∈ Γinlet

• p∗
= 0.0 ∀x ∈ Γoutlet

• u∗
= 0.0;

∂θ
∂n =

∂C
∂n = 0.0 ∀x ∈ Γw ∪ Γe ∪ Γn ∪ Γs

• u∗
= 0.0; T = C = 1.0 ∀x ∈ Γcyl

he Dirichlet boundary condition along the embedded interface, the dotted blue circle, is weakly satisfied by the
itsche’s method. The length of the enclosure is L = 1.0 and the diameter of cylinder is 0.4L in the configuration

c). There are about 60 elements along the cylinder’s diameter. The total number of elements is 22 500. The time
tep taken is dτ = 0.01. The obtained contours of the temperature and the species, and the streamlines are compared
ith literature [54] in Fig. 18. The contours in Fig. 18(d) are colored with the spanwise vorticity. This comparison

hows a good agreement between the results obtained by the proposed numerical scheme and the well-validated
esults in literature [54].
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Fig. 22. Contours for double-diffusive mixed convection over a heated cylinder at Re = 100, Pr = 0.7, Ri = 1.0, Br = −2.0, Le = 5.0
nd τ = 150: (a) vorticity field (ω ∈ [−2.0, 2.0]); (b) temperature field (θ ∈ [0.0, 1.0]); (c) species field (C ∈ [0.0, 1.0]); and (d) velocity
agnitude (|u∗

| ∈ [0.0, 1.2]).

.2.2. Double-diffusive mixed convection over a rotating disk
The benchmark case of a rotating disk is frequently used to assess the robustness of the immersed boundary

ethods. In this case, an angular velocity a = 1.0 is weakly imposed along the embedded interface using the
itsche’s methods, as shown in Fig. 4(a). Hence the following boundary condition is imposed along the embedded

nterface, u∗
= 0.0; θ = C = 1.0; a = 1.0. The freestream U∞ = 1.0; θ = C = 0.0 flows into the domain

rom the left and exits via the outlet. While the disk starts rotating in the counter-clockwise direction, a negative
ift force is generated around the disk, as shown in Fig. 19. It is found that the obtained results of lift force for a
otating disk in forced convection (Ri = 0.0) match well with literature [24,55,56] in Fig. 19. Furthermore, it is
lso observed that the convection of the species also has a remarkable influence to the vortex dynamics in wake.
ence, it is believed that the proposed numerical scheme is robust for heat & mass transfer simulations involving

trong velocity gradients. The corresponding contours of the vorticity, the temperature and the species behind a
otating disk are plotted in Fig. 20.

.2.3. Heat and mass transfer over a heated cylinder
The performance of the proposed numerical scheme is also assessed in the case of double-diffusive mixed

onvection over a fixed heated cylinder. In this case, the following boundary conditions are imposed along the
mbedded interface using the Nitsche’s methods, u∗

= 0.0; θ = C = 1.0. The time step size is dτ = 0.01. The
ime histories of the hydrodynamic forces, the averaged Nusselt number and the averaged Sherwood number are
resented in Fig. 21. It is observed that the buoyancy ratio has a significant influence on the hydrodynamic and the
hermal responses. The contours of the spanwise vorticity, the temperature, the species and the velocity magnitude

or a fixed heated cylinder at Re = 100, Pr = 0.7, Ri = 1.0, Br = −2.0 and Le = 5.0 are plotted in Fig. 22.
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Fig. 23. Double-diffusive mixed convection over an equilateral-triangular arrangement at Re = 100, Pr = 0.7, Ri = 1.0, Br = 1.0, Le = 5.0
nd g∗

= 3.0: (a) drag coefficient; (b) lift coefficient; (c) averaged Nusselt number and (d) averaged Sherwood number.

.2.4. Heat and mass transfer over an equilateral-triangular arrangement
In multi-body systems, e.g., side-by-side, tandem, staggered or arrays configurations, the interaction between

he shear layers in wake is very complicated. To assess the robustness of the proposed numerical scheme, the heat
mass transfer over three heated cylinders in an equilateral-triangular arrangement at Re = 100, Pr = 0.7,

Br = 1.0, Le = 5.0 and g∗
= 3.0 is studied in this section. The time histories of the hydrodynamic forces, the

veraged Nusselt number and the averaged Sherwood number are plotted in Fig. 23. It is found that the bottom
ylinder downstream (cylinder 3) experiences the largest fluctuations in those cases. The contours of the spanwise
orticity, the temperature, the species and the velocity magnitude are presented in Fig. 24, where a large high-
emperature region and a strong acceleration of fluid velocity are observed around the cylinder 3 in Figs. 24(b) and
4(d) respectively.

The proposed numerical scheme is further assessed for the case of vortex-induced vibrations of heated cylinders in
n equilateral-triangular arrangement at Re = 100, Pr = 0.7, Ri = 1.0, Br = 1.0 and Le = 5.0. In this case, each
ylinder is attached to a spring–damper system (m∗

= 10, ζ = 0.01 and Ur = 6.0). The time step size is dτ = 0.01
nd the total number of element is about 80 000. The time histories of the hydrodynamic forces, the averaged Nusselt
umber, the averaged Sherwood number, the streamwise vibration and the transverse vibration are shown in Fig. 25.
imilar to the case of fixed cylinders in an equilateral-triangular arrangement in the last paragraph, the cylinder 3
xperiences the largest fluctuation of the hydrodynamic forces, the heat & mass transfer and the vibration motion,
ecause of the inefficiency in heat & mass transfer. The contours of the vorticity, the temperature, the species and
30
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Fig. 24. Contours for double-diffusive mixed convection over an equilateral-triangular arrangement at Re = 100, Pr = 0.7, Ri = 1.0,
Br = 1.0, Le = 5.0, g∗

= 3.0 and τ = 100: (a) vorticity field (ω ∈ [−2.0, 2.0]); (b) temperature field (θ ∈ [0.0, 1.0]); (c) species field
C ∈ [0.0, 1.0]) and (d) velocity magnitude (|u∗

| ∈ [0.0, 2.2]).

he velocity magnitude are presented in Fig. 26. It is believed that the proposed numerical formulation is robust
nd accurate for the simulation of complicated multi-physics and multi-scale simulations involving heat & mass
ransfer and fluid–structure interaction.

. Conclusions

A Nitsche stabilized finite element method for heat & mass transfer and fluid–structure interaction was proposed
n this study. The GLS/PSPG stabilization was employed to approximate the velocity and pressure fields using the
ame polynomial order. The nonlinear advection–diffusion equations were linearized using Newton procedures.
he symmetric and non-symmetric Nitsche’s methods were utilized for heat & mass transfer along embedded

nterface(s). An upwind term was included in Nitsche’s methods to enhance the stability in case of fast moving
nterfaces across the background mesh. The jumps across the edges of the cut cells were minimized by the
host penalty method. The embedded discontinuous function within the cut cells was numerically integrated
y the projection-based adaptive Gauss quadrature numerical integration scheme. The second-order accurate
nconditionally stable generalized-α time integration was derived and implemented for heat & mass transfer.

second-order accurate staggered-partitioned weakly coupling fluid–structure coupling scheme was employed.
he performance of the methodology was extensively tested for several benchmark examples, e.g., the flow over
xed/rotating/vibrating heated cylinder(s) in enclosure and external flow. The proposed numerical scheme was
alidated with the empirical correlation, experimental data and simulations in literature. All results obtained in
he numerical examples were in excellent agreements with literature. Key advantages of the present methodology
onsisted of the robustness observed to efficiently deal with the large structural displacements, the strong thermal,
pecies & velocity gradients and the intensive nonlinearity in boundary layer induced by heat & mass transfer.
t accurately resolved the enhanced physics in multi-physics and multi-scale simulations involving heat & mass

ransfer and fluid–structure interaction.
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Fig. 25. Double-diffusive mixed convection over an equilateral-triangular arrangement at Re = 100, Pr = 0.7, Ri = 1.0, Br = 1.0, Le = 5.0,
g∗

= 3.0 and Ur = 6.0: (a) drag coefficient; (b) lift coefficient; (c) Nusselt number; (d) Sherwood number; (e) streamwise motion and (f)
ransverse motion.
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fi
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Fig. 26. Contours for double-diffusive mixed convection over an equilateral-triangular arrangement at Re = 100, Pr = 0.7, Ri = 1.0,
Br = 1.0, Le = 5.0, g∗

= 3.0, Ur = 6.0 and τ = 100: (a) vorticity field (ω ∈ [−2.0, 2.0]); (b) temperature field (θ ∈ [0.0, 1.0]); (c) species
eld (C ∈ [0.0, 1.0]) and (d) velocity magnitude (|u∗

| ∈ [0.0, 2.2]).
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[28] C. Kadapa, W.G. Dettmer, D. Perić, A stabilised immersed framework on hierarchical b-spline grids for fluid-flexible structure interaction
with solid–solid contact, Comput. Methods Appl. Mech. Engrg. 335 (2018) 472–489.

[29] Z. Chen, C. Shu, L.M. Yang, X. Zhao, N.Y. Liu, Immersed boundary–simplified thermal lattice Boltzmann method for incompressible
thermal flows, Phys. Fluids 32 (1) (2020) 013605.

[30] G. Kefayati, An immersed boundary-lattice Boltzmann method for thermal and thermo-solutal problems of Newtonian and
non-Newtonian fluids, Phys. Fluids 32 (7) (2020) 073103.

[31] T.J.R. Hughes, L.P. Franca, G.M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The
Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg. 73 (2) (1989) 173–189.

[32] T.J.R. Hughes, L.P. Franca, M. Balestra, A new finite element formulation for computational fluid dynamics: V. circumventing the
Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations,
Comput. Methods Appl. Mech. Engrg. 59 (1) (1986) 85–99.

[33] J.G. Heywood, R. Rannacher, S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes
equations, Internat. J. Numer. Methods Fluids 22 (5) (1996) 325–352.

[34] D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J.
Numer. Anal. 39 (5) (2002) 1749–1779.

[35] J.N. Jomo, F. de Prenter, M. Elhaddad, D. D’Angella, C.V. Verhoosel, S. Kollmannsberger, J.S. Kirschke, V. Nübel, E. van Brummelen,
E. Rank, Robust and parallel scalable iterative solutions for large-scale finite cell analyses, Finite Elem. Anal. Des. 163 (2019) 14–30.

[36] K.E. Jansen, C.H. Whiting, G.M. Hulbert, A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized
finite element method, Comput. Methods Appl. Mech. Engrg. 190 (3) (2000) 305–319.

[37] J. Chung, G.M. Hulbert, A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α
method, J. Appl. Mech. 60 (2) (1993) 371–375.
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